精英家教网 > 高中数学 > 题目详情

【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销量价格P(元)的关系如图所示;③每月需各种开支2 000元.

(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

(2)企业乙只依靠该店,最早可望在几年后脱贫?

【答案】见解析

【解析】

解:设该店月利润余额为L元,

则由题设得L=Q(P-14)×100-3 600-2 000,①

由销量图易得Q=

代入①式得L=

(1)当14≤P≤20时,Lmax=450元,此时P=19.5元;

当20<P≤26时,Lmax元,此时P=元.

故当P=19.5元时,月利润余额最大,为450元.

(2)设可在n年后脱贫,依题意有12n×450-50 000-58 000≥0,解得n≥20.

即最早可望在20年后脱贫.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】地自来苯超标,当地自来水公司对水质检测后,决定在水中投放一种药剂来净化水质,已知每投放质量为药剂后,经过该药剂在水中释放的浓度毫克/升)满足其中当药剂在水中的浓度不低于5(毫/升)时称为有效净化;当药剂在水中的浓度不低于5(毫克/升)且不高于10(毫克/升称为最佳净化.

如果投放的药剂质量为试问自来水达到有效净化一共可持续几天

如果投放的药剂质量,为了使在9天(从投放药剂算起包括9天)之内的自来水达到最佳净化,试确定应该投放的药剂质量最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象上有一点列,点轴上的射影是,且 (), .

(1)求证: 是等比数列,并求出数列的通项公式;

(2)对任意的正整数,当时,不等式恒成立,求实数的取值范围.

(3)设四边形的面积是,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

1)若曲线过点,求曲线在点处的切线方程;

2)求函数在区间上的最大值;

3)若函数有两个不同的零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名同学参加某次数学考试成绩(单位:分)的频率分布直方图如下:

)求频率分布直方图中的值;

)分别求出成绩落在中的学生人数;

)从成绩在的学生中任选2人,求此2人的成绩都在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是上、下底边长为2和6,高为的等腰梯形,将它沿对称轴折叠,使二面角为直二面角.

(1)证明:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是( )

A.多于4个 B.4个

C.3个 D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是边长为的菱形,.

(1)证明:平面

(2)若求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象过点且在该点处的切线与直线垂直

(1)求实数的值

(2)对任意给定的正实数曲线上是否存在两点使得是以为直角顶点的直角三角形且此三角形斜边中点在轴上

查看答案和解析>>

同步练习册答案