精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
四棱锥,面⊥面.侧面是以为直角顶点的等腰直角三角形,底面为直角梯形,,,上一点,且.

(Ⅰ)求证
(Ⅱ)求二面角的正弦值.
(Ⅰ)先证⊥面,再证⊥面,进而得证;
(Ⅱ)

试题分析:(Ⅰ)面⊥面且交线为
⊥面
,                                                           ……3分

⊥面,                                          ……5分
.                                                            ……6分
(Ⅱ)设中点,则,∴⊥面,
建系如图,则,
,                                    ……8分
为面的法向量,
,∴为面的一个法向量,                  ……9分
为面的法向量,                                         ……10分
,                                           ……11分
∴二面角的正弦值为.                                      ……12分
点评:用定理证明立体几何问题时要紧扣定理,定理中要求的条件一个也不能漏;用空间向量求解二面角时,要仔细计算,还要注意题目中的二面角时锐角还是钝角.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱的各棱长均为2, 侧棱与底面所成角为,且侧面底面.

(1)证明:点在平面上的射影的中点;
(2)求二面角的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在多面体ABCDE中,,,是边长为2的等边三角形,CD与平面ABDE所成角的正弦值为.

(1)在线段DC上是否存在一点F,使得,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D、E、F分别是棱AB、BC、CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为(  )
A.              B.             C.             D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图1,在等腰梯形中,上一点, ,且.将梯形沿折成直二面角,如图2所示.

(Ⅰ)求证:平面平面
(Ⅱ)设点关于点的对称点为,点所在平面内,且直线与平面所成的角为,试求出点到点的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是(      )
A.若mα,nβ,m∥n,则α∥β
B.若n⊥α,n⊥β,m⊥β,则m⊥α
C.若m∥α,n∥β,m⊥n,则α⊥β
D.若α⊥β,n⊥β,m⊥n,则m⊥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若α、β是两个不同的平面,m、n是两条不同直线,则下列命题不正确的是
A.α∥β,m⊥α,则m⊥β
B.m∥n,m⊥α,则n⊥α
C. n∥α,n⊥β,则α⊥β
D.αβ=m,n与α、β所成的角相等,则m⊥n

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。

(Ⅰ)求证:BO⊥PA;
(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线的夹角大小等于___________.

查看答案和解析>>

同步练习册答案