精英家教网 > 高中数学 > 题目详情
已知斜三棱柱的各棱长均为2, 侧棱与底面所成角为,且侧面底面.

(1)证明:点在平面上的射影的中点;
(2)求二面角的大小;
(3)求点到平面的距离.
(1)见解析  (2)      (3)

【错解分析】对于立体几何的角和距离,一定要很好的理解“作,证,”三个字
【正解】解:(1)证明:过B1点作B1O⊥BA。∵侧面ABB1A1⊥底面ABC

∴A1O⊥面ABC ∴∠B1BA是侧面BB1与底面ABC倾斜角∴∠B1BO= 
在Rt△B1OB中,BB1=2,∴BO=BB1=1
又∵BB1=AB,∴BO=AB ∴O是AB的中点,
即点B1在平面ABC上的射影O为AB的中点.
(2)连接AB1过点O作OM⊥AB1,连线CM,OC,
∵OC⊥AB,平面ABC⊥平面AA1BB1∴OC⊥平面AABB.∴OM是斜线CM在平面AA1B1B的射影 ∵OM⊥AB1∴AB1⊥CM ∴∠OMC是二面角C—AB1—B的平面角
在Rt△OCM中,OC=,OM=
∴∠OMC=∴二面角C—AB1—B的大小为
(3)过点O作ON⊥CM,∵AB1⊥平面OCM,∴AB1⊥ON
∴ON⊥平面AB1C。∴ON是O点到平面AB1C的距离

连接BC1与B1C相交于点H,则H是BC1的中点,∴B与C1到平面ACB1的相导。
又∵O是AB的中点 ∴B到平面AB1C的距离是O到平面AB1C距离的2倍
∴点到平面AB1C距离为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在空间中,设是三条不同的直线,是两个不同的平面,在下列命题:
①若两两相交,则确定一个平面
②若,且,则
③若,且,则
④若,且,则
其中正确的命题的个数是(   )
A.0B.1 C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
四棱锥,面⊥面.侧面是以为直角顶点的等腰直角三角形,底面为直角梯形,,,上一点,且.

(Ⅰ)求证
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,菱形ABCD与矩形BDEF所在平面互相垂直,

(1)求证:FC∥平面AED
(2)若,当二面角为直二面角时,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱柱中,底面是正三角形,侧棱底面,点是侧面 的中心,若,则直线与平面所成角的大小为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将锐角为且边长是2的菱形,沿它的对角线折成60°的二面角,则(      )
①异面直线所成角的大小是       .
②点到平面的距离是       .
A.90°,B.90°,C.60°,D.60°,2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,一个三棱柱形容器中盛有水,且侧棱AA1=8.若侧面AA1B1B水平放置时,液面恰好过ACBCA1C1,B1C1的中点.则当底面ABC水平放置时,液面高为(       )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平面⊥平面是直角三角形,,四边形是直角梯形,其中,,且的中点,分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值.

查看答案和解析>>

同步练习册答案