【题目】已知椭圆
过点
,过右焦点且垂直于
轴的直线截椭圆所得弦长是1.
(1)求椭圆
的标准方程;
(2)设点
分别是椭圆
的左,右顶点,过点
的直线
与椭圆交于
两点(
与
不重合),证明:直线
和直线
交点的横坐标为定值.
科目:高中数学 来源: 题型:
【题目】已知函数是定义在
,
,
上的奇函数,当
,
时,
(
).
(Ⅰ)求
的解析式;
(Ⅱ)设
,
,
,求证:当
时,
恒成立;
(Ⅲ)是否存在实数
,使得当
,
时,
的最小值是
?如果存在,
求出实数
的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数,据此估计,该运动员三次投篮恰有两次命中的概率为( )
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
A.0.40 B.0.30 C.0.35 D.0.25
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知四棱锥
中,
平面
,底面
是菱形,且
.
,
、
的中点分别为
,
.
(Ⅰ)求证
.
(Ⅱ)求二面角
的余弦值.
(Ⅲ)在线段
上是否存在一点
,使得
平行于平面
?若存在,指出
在
上的位置并给予证明,若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
,
,
,
满足
,且当
时,
,令
.
(Ⅰ)写出
的所有可能的值.
(Ⅱ)求
的最大值.
(Ⅲ)是否存在数列
,使得
?若存在,求出数列
;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知定圆
,定直线
,过
的一条动直线
与直线相交于
,与圆
相交于
,
两点,
是
中点.
(Ⅰ)当
与
垂直时,求证:
过圆心
;
(Ⅱ)当
时,求直线
的方程;
(Ⅲ)设
,试问
是否为定值,若为定值,请求出
的值;若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
中,M,N分别为
的中点.
![]()
(1)证明:直线MN//平面CAB1;
(2)若四边形ABB1A1是菱形,且
,
,求平面
和平面
所成的角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数
,向量
,
,经过点
,以
为方向向量的直线与经过点
,以
为方向向量的直线交于点
,其中
.
(
)求点
的轨迹方程,并指出轨迹
.
(
)若点
,当
时,
为轨迹
上任意一点,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com