精英家教网 > 高中数学 > 题目详情
13.y=3cos(2x+φ)的一个对称中心为($\frac{4π}{3}$,0),则|φ|的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 由条件利用余弦函数的图象的对称性,可得2•$\frac{4π}{3}$+φ=kπ+$\frac{π}{2}$,k∈Z,由此求得|φ|的最小值.

解答 解:由于y=3cos(2x+φ)的一个对称中心为($\frac{4π}{3}$,0),故有2•$\frac{4π}{3}$+φ=kπ+$\frac{π}{2}$,k∈Z,
求得φ=kπ-$\frac{13π}{6}$,k∈Z,故当k=2时,|φ|取得最小值为 $\frac{π}{6}$,
故选:A.

点评 本题主要考查余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.用秦九韶算法计算多项式f(x)=2x6+3x5+2x3+5x2+8x+1,当x=0.3时的值,需要做的乘法和加法次数分别是(  )
A.5,-5B.5,6C.6,5D.6,6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知全集U=R,非空集合A={x|(x-2)(x-3a-1)<0},B={x|(x-a)(x-a2-2)<0}.
(1)当a=$\frac{1}{2}$时,求(∁UB∩A);
(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若(2a+1)${\;}^{\frac{3}{4}}$<(3-5a)${\;}^{\frac{3}{4}}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若x2+mx+6=0的解集是集合B={2,3}的子集,求m的范围值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.方程x-tanx=0的实根个数是(  )
A.0B.1C.2D.无数多个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.7个人站成一排照相(假定7人的身高均不同);①某1人必须站在中间;②某2人必须排在一起;③其中某4人与其余3人必相间而排;④若7人全部按高矮顺序排列.问各有多少种排法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=cos(2x+$\frac{π}{3}$)的对称轴为x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.化简:(2-$\sqrt{x+3}$)(2+$\sqrt{x+3}$)

查看答案和解析>>

同步练习册答案