精英家教网 > 高中数学 > 题目详情
8.已知log2(x+y)=log2x+log2y,则$\frac{1}{x}+\frac{1}{y}$=1,则x2+y2的最小值为8.

分析 由题意可得x,y为正数且x+y=xy,同除以xy可得$\frac{1}{x}+\frac{1}{y}$=1;由基本不等式可得x+y≥4,可得x2+y2=[(x+y)-1]2-1,由二次函数的最值可得.

解答 解:∵log2(x+y)=log2x+log2y,
∴x,y为正数且x+y=xy,
同除以xy可得$\frac{1}{x}+\frac{1}{y}$=1,
由基本不等式可得x+y=xy≤($\frac{x+y}{2}$)2
∴(x+y)2≥4(x+y),∴x+y≥4,
∴x2+y2=(x+y)2-2xy=(x+y)2-2(x+y)
=[(x+y)-1]2-1≥(4-1)2-1=8
故答案为:1;8

点评 本题考查基本不等式求最值,涉及对数的运算,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,设直线l1:kx-y=0,直线l2:(2k-1)x+(k-1)y-7k+4=0.
(1)若直线l1∥l2,求实数k的值;
(2)求证:直线l2过定点C,并求出点C的坐标;
(3)当k=2时,设直线l1,l2交点为A,过A作x轴的垂线,垂足为B,求点A到直线BC的距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R),若f(-1)=0,且函数f(x)的值域为[0,+∞).
(1)求f(x)的表达式;
(2)当x∈[-2,2]时,求g(x)=f(x)-kx最小值h(k);
(3)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.己知f(x)是定义在R上的奇函数,当x>0时f(x)=x2-4x+3,则不等式f(x)≥0的解集用区间表示为[-3,-1]∪[0,1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x+$\frac{4}{x}$.
(1)判断函数f(x)的奇偶性;
(2)求证:函数f(x)在(0,2)上单调递减,在(2,+∞)上单调递增;
(3)求函数f(x)在[1,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C所对的边分别是a、b、c满足:cosAcosC+sinAsinC+cosB=$\frac{3}{2}$,且a、b、c成等比数列.
(Ⅰ)求角B的大小;
(Ⅱ)若$\frac{a}{tanA}$+$\frac{c}{tanC}$=$\frac{2b}{tanB}$,a=2,判断三角形形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x2+(a-3)x+1在区间[-1,+∞)上是递增的,则实数a的取值范围是(  )
A.[-3,0)B.(-∞,-3]C.[5,+∞)D.(0,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和Sn满足(p-1)Sn=p2-an(p>0,p≠1),且a3=$\frac{1}{3}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{2-lo{g}_{3}{a}_{n}}$,数列{bnbn+2}的前n项和为Tn,若对于任意的正整数n,都有Tn<m2-m+$\frac{3}{4}$成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知长方形的周长为定值a,则它的面积的最大值是$\frac{{a}^{2}}{16}$.

查看答案和解析>>

同步练习册答案