精英家教网 > 高中数学 > 题目详情
6.在等差数列{an}中,若a6=1,则a2+a10=2.

分析 由已知条件利用等差数列通项公式能求出a2+a10

解答 解:∵在等差数列{an}中,a6=1,
∴a2+a10=a1+d+a1+9d=2(a1+5d)=2a6=2.
故答案为:2.

点评 本题考查等差数列中两项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图是某圆拱桥的示意图.这个圆拱桥的水面跨度AB=24m,拱高OP=8m.现有一船,宽10m,水面以上高6m,这条船能从桥下通过吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{\sqrt{2}sin(x-\frac{π}{4})+2}{2si{n}^{2}\frac{x}{2}+1}$的最大值为M,最小值为m,则M+m等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC是等腰直角三角形.|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=1,$\overrightarrow{BC}$=4$\overrightarrow{BD}$,
(1)求$\overrightarrow{AD}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)
(2)若点M在线段BC上,求$\overrightarrow{AM}$•$\overrightarrow{MD}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C所对的边分别为a,b,c,若a+b=2,c=1,C=$\frac{π}{3}$,则a=(  )
A.$\frac{3}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若正项数列{an}满足:$\frac{{a}_{n+1}}{{a}_{n}}$=an+1-an(a∈N*),则称此数列为“比差等数列”.
(1)请写出一个“比差等数列”的前3项的值;
(2)设数列{an}是一个“比差等数列”
(i)求证:a2≥4;
(ii)记数列{an}的前n项和为Sn,求证:对于任意n∈N*,都有Sn>$\frac{{n}^{2}+5n-4}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用反证法证明“如果a3>b3,则a>b”,假设的内容是(  )
A.a<bB.a=bC.a≤bD.a≥b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.天气预报说,在今后的三天中,每一天下雨的概率均为40%.用设计模拟试验的方法求这三天中恰有一天下雨的概率,利用计算器或计算机可以产生0到9之间取整数值的随机数,我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,这样可以体现下雨的概率是40%,因为是三天,所以每三个随机数作为一组,例如,产生了20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,394,028,556,488,720,123,536,983,则得到三天中恰有一天下雨的概率近似为(  )
A.25%B.30%C.40%D.45%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.五一节期间,某商场为吸引顾客消费推出一项优惠活动,活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券.(假定指针等可能地停在任一位置,指针落在区域的边界时,重新转一次)指针所在的区域及对应的返劵金额见表.
例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(1)已知顾客甲消费后获得n次转动转盘的机会,已知他每转一次转盘指针落在区域边界的概率为p,每次转动转盘的结果相互独立,设ξ为顾客甲转动转盘指针落在区域边界的次数,ξ的数学期望Eξ=$\frac{1}{25}$,方差Dξ=$\frac{99}{2500}$,求n、p的值;
(2)顾客乙消费280元,并按规则参与了活动,他获得返券的金额记为η(元).求随机变量η的分布列和数学期望.
指针位置A区域B区域C区域
返券金额(单位:元)60300

查看答案和解析>>

同步练习册答案