精英家教网 > 高中数学 > 题目详情
15、解不等式|x-1|+|x+2|≤5.
分析:先去掉绝对值然后再根据绝对值不等式的解法进行求解.
解答:解:①当x≤-2时,原不等式可以化为-(x-1)-(x+2)≤5解得x≥-3,所以解集为[-3,-2]
②当-2<x<1时,原不等式可以化为-(x-1)+(x+2)≤5解得R,所以解集为(-2,1)
③当x≥1时,原不等式可以化为(x-1)+(x+2)≤5解得x≤2,所以解集为[1,2]
综上可得,原不等式的解集是[-3,2]
点评:此题考查绝对值不等式的解法,运用了分类讨论的思想,解题的关键是去掉绝对值,此类题目是高考常见的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于任意的实数a,不等式|a+1|+|a-1|≥M恒成立,记实数M的最大值是m.
(1)求m的值;
(2)解不等式|x-1|+|2x-3|≤m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于 x的不等式|2x-m|≤1的整数解有且仅有2.
(1)求整数m的值.
(2)解不等式|x-1|+|x-3|≥m.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出不等式|x|+|y|≤1的图形,并指出其解的范围.利用不等式的图形解不等式
①||x+1|-|x-1||<1;      
②|x|+2|y|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(Ⅰ)选修4-2:矩阵与变换,
已知矩阵A=
01
a0
,矩阵B=
02
b0
,直线l1
:x-y+4=0经矩阵A所对应的变换得直线l2,直线l2又经矩阵B所对应的变换得到直线l3:x+y+4=0,求直线l2的方程.
(Ⅱ)选修4-4:坐标系与参数方程,
求直线
x=-2+2t
y=-2t
被曲线
x=1+4cosθ
y=-1+4sinθ
截得的弦长.
(Ⅲ)选修4-5:不等式选讲,解不等式|x+1|+|2x-4|>6.

查看答案和解析>>

同步练习册答案