精英家教网 > 高中数学 > 题目详情
设平面向量am=(m,1),bn=(2,n),其中m,n∈{1,2,3,4},
(Ⅰ)请列出有序数组(m,n)的所有可能结果;
(Ⅱ)记“使得am⊥(am-bn)成立的(m,n)”为事件A,求事件A发生的概率。
解:(Ⅰ)有序数组(m,n)的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个;
(Ⅱ)由am⊥(am-bn),得m2-2m+1-n=0,即n=(m-1)2
由于m,n∈{1,2,3,4},
故事件A包含的基本事件为(2,1)和(3,4),共2个,
又基本事件的总数为16,
故所求的概率为P(A)=
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在平面向量中有如下定理:设点O、P、Q、R为同一平面内的点,则P、Q、R三点共线的充要条件是:存在实数t,使
OP
=(1-t)
OQ
+t
OR
.试利用该定理解答下列问题:
如图,在△ABC中,点E为AB边的中点,点F在AC边上,且CF=2FA,BF交CE于点M,设
AM
=x
AE
+y
AF
,则x+2y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知正三棱柱ABC-A1B1C1的底面边长为1,高为h(h>2),动点M在侧棱BB1上移动.设AM与侧面BB1C1C所成的角为θ.
(1)当θ∈[
π
6
π
4
]
时,求点M到平面ABC的距离的取值范围;
(2)当θ=
π
6
时,求向量
AM
BC
夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的个数为(  )
①斜线与它在平面内的射影所成的角是这条斜线和这个平面内所有直线所成的角的最小角.
②二面角α-l-β的平面角是过棱l上任一点O,分别在两个半平面内任意两条射线OA,OB所成角的∠AOB的最大角.
③如果一条直线和一个平面的一条斜线垂直,那么它也和这条斜线在这个平面内的射影垂直.
④设A是空间一点,
n
为空间任一非零向量,适合条件的集合{
M
|
AM
n
=0
}的所有点M构成的图形是过点A且与
n
垂直的一个平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•惠州二模)在平面向量中有如下定理:设点O,P,Q,R为同一平面内的点,则P,Q,R三点共线的充要条件是:存在实数t,使
OP
=(1-t)
OQ
+t
OR
.如图,在△ABC中,点E为AB边的中点,点F在AC边上,且CF=2FA,BF交CE于点M,设
AM
=x
AE
+y
AF
,则(  )

查看答案和解析>>

同步练习册答案