精英家教网 > 高中数学 > 题目详情
三棱锥S-ABC中,E、F、G、H分别为SA、AC、BC、SB的中点,则截面EFGH将三棱锥S-ABC分成两部分的体积之比为______.
精英家教网

精英家教网
如图连接HC,HE,HA,AG,因为三棱锥S-ABC中,E、F、G、H分别为SA、AC、BC、SB的中点,
由同底面积等高体积相等,
∴VH-AGF=VH-GFC,VG-ABH=VC-SHE,VC-HEF=VA-HEF
VH-AGF+VG-ABH+VA-HEF=VH-GFC+VC-SHE+VC-HEF
截面EFGH将三棱锥S-ABC分成两部分的体积之比为1:1,
故答案为:1:1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图在三棱锥S-ABC中∠ACB=90°,SA⊥面ABC,AC=2,BC=
13
SB=
29

(1)证明SC⊥BC.
(2)求侧面SBC与底面ABC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.
(1)求证:平面MAP⊥平面SAC.
(2)求二面角M-AC-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2
3
,M,N分别为AB,SB的中点.
(1)证明:AC⊥SB;
(2)求二面角N-CM-B的大小;
(3)求点B到平面CMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,△ABC是边长为8的正三角形,SA=SC=2
7
,二面角S-AC-B的大小为60°
(1)求证:AC⊥SB;
(2)求三棱锥S-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O为BC中点.
(Ⅰ)求点B到平面SAC的距离;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

同步练习册答案