【题目】已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为
元时,生产
件产品的销售收入是
(元),
为每天生产
件产品的平均利润(平均利润=总利润/总产量).销售商从工厂每件
元进货后又以每件
元销售,
,其中
为最高限价
,
为销售乐观系数,据市场调查,
是由当
是
,
的比例中项时来确定.
(1)每天生产量
为多少时,平均利润
取得最大值?并求
的最大值;
(2)求乐观系数
的值;
(3)若
,当厂家平均利润最大时,求
与
的值.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点. ![]()
(1)证明:BE∥平面ADP;
(2)求直线BE与平面PDB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.![]()
(1)证明:PB∥平面AEC;
(2)设AP=1,AD=
,三棱锥P﹣ABD的体积V=
,求A到平面PBC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:y=kx﹣1与双曲线x2﹣y2=1的左支交于A,B两点.
(1)求斜率k的取值范围;
(2)若直线l2经过点P(﹣2,0)及线段AB的中点Q且l2在y轴上截距为﹣16,求直线l1的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
分别是椭圆
的长轴与短轴的一个端点,
是椭圆的左、右焦点,以
点为圆心、3为半径的圆与以
点为圆心、1为半径的圆的交点在椭圆
上,且
.
(1)求椭圆
的方程;
(2)设
为椭圆
上一点,直线
与
轴交于点
,直线
与
轴交于点
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以椭圆的一个短轴端点及两个焦点构成的三角形的面积为
,圆C方程为
.
(1)求椭圆及圆C的方程;
(2)过原点O作直线l与圆C交于A,B两点,若
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别交单位圆于A,B两点.已知A,B两点的横坐标分别是
,
. ![]()
(1)求tan(α+β)的值;
(2)求α+2β的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com