精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,以椭圆的一个短轴端点及两个焦点构成的三角形的面积为,圆C方程为.

(1)求椭圆及圆C的方程;

(2)过原点O作直线l与圆C交于A,B两点,若,求直线l的方程.

【答案】(1)椭圆的方程,圆的方程为;(2).

【解析】

试题分析:(1)由离心率为可得,结合,根据以椭圆的一个短轴端点及两个焦点为顶点的三角形面积为可得,从而求的,得到椭圆和圆的方程;(2)设出直线的方程,整理方程组,由判别式求出直线斜率的范围,韦达定理得到坐标的关系,根据向量数量积的坐标表示列出方程,求的斜率.

试题解析:(1)设椭圆的焦距为2c,左、右焦点分别为,由椭圆的离心率为可得,所以

以椭圆的一个短轴端点及两个焦点为顶点的三角形的面积为,即

所以椭圆的方程,圆的方程为

(2)当直线的斜率不存时,直线方程为,与圆C相切,不符合题意

当直线的斜率存在时,设直线方程

可得

由条件可得,即

,则

而圆心C的坐标为(2,1)则

所以

所以解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(Ⅰ) 求成绩落在[70,80)上的频率,并补全这个频率分布直方图;

(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;

(Ⅲ) 设学生甲、乙的成绩属于区间[40,50),现从成绩属于该区间的学生中任选两人,求甲、乙中至少有一人被选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】刘老师是一位经验丰富的高三理科班班主任,经长期研究,他发现高中理科班的学生的数学成绩(总分150分)与理综成绩(物理、化学与生物的综合,总分300分)具有较强的线性相关性,以下是刘老师随机选取的八名学生在高考中的数学得分x与理综得分y(如下表):

学生编号

1

2

3

4

5

6

7

8

数学分数x

52

64

87

96

105

123

132

141

理综分数y

112

132

177

190

218

239

257

275

参考数据及公式:

(1)求出y关于x的线性回归方程;

(2)若小汪高考数学110分,请你预测他理综得分约为多少分?(精确到整数位);

(3)小金同学的文科一般,语文与英语一起能稳定在215分左右.如果他的目标是在

高考总分冲击600分,请你帮他估算他的数学与理综大约分别至少需要拿到多少分?(精确到整数位).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)讨论函数的单调性;

)若对于任意的,若函数在区间上有最值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在对应的小矩形的面积分别是,且.

(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在的人数;

(2)若按照分层抽样,从年龄在的人群中共抽取6人,再从这6人中随机抽取2人作深入调查,求至少有1人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足:对任意都有成立时,

(1)求的值并证明

(2)判断的单调性并加以证明

(3)若函数上递减求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .

(Ⅰ)求证:∥平面;

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,得到下面的数据表:

休闲方式

性别

看电视

看书

合计

20

100

120

20

20

40

合计

40

120

160

下面临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量,求 的分别列和期望;

(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,椭圆的离心率为是椭圆的右焦点,直线的斜率为为坐标原点.

(1)求的方程;

(2)设过点的动直线相交于两点,问:是否存在直线,使以为直径的圆经过原点,若存在,求出对应直线的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案