精英家教网 > 高中数学 > 题目详情

【题目】已知函数满足:对任意都有成立时,

(1)求的值并证明

(2)判断的单调性并加以证明

(3)若函数上递减求实数的取值范围

【答案】(1),证明见解析;(2)上是增函数,证明见解析;(3).

【解析】

试题分析:(1)令可求得,根据时,可排除那么,再由可得结论;(2),可证;(3)若函数上递减,根据单调性,,进而.

试题解析:(1)

与已知条件相矛盾

所以

那么

从而

(2)函数上是增函数

由(1)可知对任意

函数上是增函数

(3)由(2)知函数上是增函数,

函数上也是增函数若函数上递减

则当

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】天气预报显示,在今后的三天中,每一天下雨的概率为40%,现用随机模拟的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0--9之间整数值的随机数,并制定用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

则这三天中恰有两天下雨的概率近似为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是,样本数据分组为

(1)求直方图中的值;

(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图,在三棱柱中,底面是边长为2的等边三角形,的中点.

)求证:

)若四边形是正方形,且,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的一个短轴端点及两个焦点构成的三角形的面积为,圆C方程为.

(1)求椭圆及圆C的方程;

(2)过原点O作直线l与圆C交于A,B两点,若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在 对应的小矩形的面积分别是,且.

(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在的人数;

(2)计算在五一活动中消费超过3000元的消费者的平均年龄;

(3)若按照分层抽样,从年龄在 的人群中共抽取7人,再从这7人中随机抽取2人作深入调查,求至少有1人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex-ax-2.

(1)求f(x)的单调区间;

(2)若a=1,k为整数,且当x>0时,(x-k)f(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了参加师大附中第30届田径运动会的开幕式,高三年级某6个班联合到集市购买了6根竹竿,作为班期的旗杆之用,它们的长度分别为3.8,4.3,3.6,4.5,4.0,4.1单位:米

1若从中随机抽取两根竹竿,求长度之差不超过0.5米的概率;

2若长度不小于4米的竹竿价格为每根10元,长度小于4米的竹竿价格为每根从这6根竹竿中随机抽取两根,若期望这两根竹竿的价格之和为18元,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线).

(1)证明:直线过定点;

(2)若直线不经过第四象限,求的取值范围;

(3)若直线轴负半轴于,交轴正半轴于,△的面积为为坐标原点),求的最小值,并求此时直线的方程.

查看答案和解析>>

同步练习册答案