精英家教网 > 高中数学 > 题目详情
如图2-22,已知两圆相交于C、D,AB为公切线,CD的延长线交AB于M,若AB=12,CD=9,则MD=________________.

图2-22

解析:由切割线定理,MA2=MD·MC,MB2=MD·MC,

∴MA2=MB2.

∴MA=MB=AB=6.

∵MA2=MD·MC,

∴62=MD(MD+9).解得MD=3.

答案:3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,其右焦点F是圆(x-1)2+y2=1的圆心.
(1)求椭圆方程;
(2)过所求椭圆上的动点P作圆的两条切线分别交y轴于M(0,m),N(0,n)两点,当|m-n|=2
2
-1
时,求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某城市设立以城中心O为圆心、r公里为半径的圆形保护区,从保护区边缘起,在城中心O正东方向上有一条高速公路PB、西南方向上有一条一级公路QC,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆O相切的直道BC.已知通往一级公路的道路AC每公里造价为a万元,通往高速公路的道路AB每公里造价是m2a万元,其中a,r,m为常数,设∠POA=θ,总造价为y万元.
(1)把y表示成θ的函数y=f(θ),并求出定义域;
(2)当m=
6
+
2
2
时,如何确定A点的位置才能使得总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

 选做题(在A、B、C、D四小题中只能选做两题,并将选作标记用2B铅笔涂黑,每小题10分,共20分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).
A、(选修4-1:几何证明选讲)
如图,BD为⊙O的直径,AB=AC,AD交BC于E,求证:AB2=AE•AD
B、(选修4-2:矩形与变换)
已知a,b实数,如果矩阵M=
1a
b2
所对应的变换将直线3x-y=1变换成x+2y=1,求a,b的值.
C、(选修4-4,:坐标系与参数方程)
设M、N分别是曲线ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的动点,判断两曲线的位置关系并求M、N间的最小距离.
D、(选修4-5:不等式选讲)
设a,b,c是不完全相等的正数,求证:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

科目:高中数学 来源: 题型:

己知在锐角ΔABC中,角所对的边分别为,且

(I )求角大小;

(II)当时,求的取值范围.

20.如图1,在平面内,的矩形,是正三角形,将沿折起,使如图2,的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。

(1)求证:平面

(2)设二面角的平面角为,若,求线段长的取值范围。

 


21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点

(1)求椭圆C的方程;

(2)求三角形MNT的面积的最大值

22. 已知函数

(Ⅰ)若上存在最大值与最小值,且其最大值与最小值的和为,试求的值。

(Ⅱ)若为奇函数:

(1)是否存在实数,使得为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;

(2)如果当时,都有恒成立,试求的取值范围.

查看答案和解析>>

同步练习册答案