精英家教网 > 高中数学 > 题目详情
(2011•广州模拟)在正四棱锥V-ABCD中,底面正方形ABCD的边长为1,侧棱长为2,则异面直线VA与BD所成角的大小为(  )
分析:连接AC,交BD于O,连接VO,先在正方形ABCD中证出对角线AC、BD互相垂直,再在三角形VBD中,根据VB=VD和O为BD中点,证出VO、BD互相垂直,最后根据直线与平面垂直的判定理证出BD⊥平面ACV,从而BD⊥VA,即异面直线VA与BD所成角大小为
π
2
解答:解:连接AC,交BD于O,连接VO
∵四边形ABCD是正方形,
∴AC⊥BD,O为BD的中点
又∵正四棱锥V-ABCD中,VB=VD
∴VO⊥BD
∵AC∩VO=O,AC、VO?平面ACV
∴BD⊥平面ACV
∵VA?平面ACV
∴BD⊥VA
即异面直线VA与BD所成角等于
π
2

故选D
点评:本题以求正四棱锥中异面直线所成角为载体,着重考查了直线与平面垂直的判定与性质,以及异面垂直的概念,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广州模拟)已知函数f(x)=cos2x+
3
sinxcosx-
1
2

(Ⅰ)若x∈[0,
π
2
]
,求f(x)的最大值及取得最大值时相应的x的值;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,若f(
A
2
)=1
,b=l,c=4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)定义:若函数f(x)的图象经过变换T后所得图象对应函数的值域与f(x)的值域相同,则称变换T是f(x)的同值变换.下面给出四个函数及其对应的变换T,其中T不属于f(x)的同值变换的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)已知实数x,y满足
x≥0
y≤1
2x-2y+1≤0.
,若目标函数z=ax+y(a≠0)取得最小值时最优解有无数个,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)设随机变量X~N(1,52),且P(X≤0)=P(X>a-2),则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)已知直线y=k(x-2)(k>0)与抛物线y2=8x相交于A、B两点,F为抛物线的焦点,若|FA|=2|FB|,则k的值为
2
2
2
2

查看答案和解析>>

同步练习册答案