精英家教网 > 高中数学 > 题目详情

已知三棱锥S—ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.

(1)求证:BC⊥SA

(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;

(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱锥S—ABC的体积.

 

【答案】

(1)先证明 (2) 先证O为底面△ABC的垂心 (3)

【解析】

试题分析:证明:(1) AH⊥面SBC,BC在面SBC内   ∴AH⊥BC

 

,同理,因此

 

 

O为底面△ABC的垂心,而三棱锥S—ABC的底面是正三角形,故O为底面△ABC的中心

 (3)由(1)有SA=SB=SC=,设CO交AB于F,则CF⊥AB, CF是EF在面ABC内的射影,

EF⊥AB,

∠EFC为二面角H—AB—C的平面角,∠EFC=30°,∠ECF=60°,

OC=,SO=3,AB=3,

  

考点:直线与平面垂直的性质;棱柱、棱锥、棱台的体积.

点评:本题考查异面直线垂直的证明,考查三角形中心的证明,考查三棱锥体积的求法,解题时要认真审题,仔细解答,合理地化空间问题为平面问题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=
2
r
,则球的体积与三棱锥体积之比是(  )
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2;则此棱锥的体积为
2
6
2
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的三条侧棱两两垂直,且SA=2,SB=SC=4,若点P到S、A、B、C这四点的距离都是同一个值,则这个值是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)已知三棱锥S-ABC的所有顶点都在以O为球心的球面上,△ABC是边长为1的正三角形,SC为球O的直径,若三棱锥S-ABC的体积为
2
6
,则球O的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的四个顶点在以O为球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,则当球的表面积为400π时,点O到平面ABC的距离为(  )

查看答案和解析>>

同步练习册答案