精英家教网 > 高中数学 > 题目详情

已知函数f(x)=Asin(ωx+)(其中x∈R,A>0,ω>0)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(,-2).

(1)求f(x)的解析式;

(2)若x∈[0,]求函数f(x)的值域;

(3)求函数y=f(x)的图象左移个单位后得到的函数解析式.

 

【答案】

(1)(2)[1,2](3)

【解析】(1)由与x轴的交点中,相邻两个交点之间的距离为可得周期得到,然后再根据图象上一个点为M(,-2),所以,可知此M点为最低点,从而可得A=2,所以解析式为.

(2)在(1)的基础上,由x的取值范围,确定出的取值范围,进而可求得f(x)的值域.

(3) 函数y=f(x)的图象左移个单位根据左加右减的原则,可知平移后的解析式为

.

解:(1)  ……4分          (2)[1,2]  ….8分

(3)……………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年江西省南昌市高一5月联考数学卷(解析版) 题型:解答题

已知函数f(x)= (a、b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.

(1)求函数f(x)的解析式;

(2)设k>1,解关于x的不等式f(x)< .

 

查看答案和解析>>

科目:高中数学 来源:2015届辽宁盘锦市高一第一次阶段考试数学试卷(解析版) 题型:解答题

(12分)已知函数f(x)= (a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省莱芜市高三上学期10月测试理科数学 题型:解答题

(本小题满分l2分)

已知函数f(x)=a

 

(1)求证:函数yf(x)在(0,+∞)上是增函数;

 

(2)f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省十二校高三第一次联考数学文卷 题型:解答题

( (本小题满分13分)

已知函数f(x)=(a-1)xaln(x-2),(a<1).

(1)讨论函数f(x)的单调性;

(2)设a<0时,对任意x1x2∈(2,+∞),<-4恒成立,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省高一期末考试文科数学 题型:解答题

(12分)已知函数f(X)=㏒a(ax-1) (a>0且a≠1)

     (1)求函数的定义域   (2)讨论函数f(X)的单调性

 

查看答案和解析>>

同步练习册答案