精英家教网 > 高中数学 > 题目详情
设实数x,y满足
x-2y≤-3
2x+y≤4
x≥0
,则z=3x+y的最大值是
 
分析:首先作出可行域,再作出直线l0:y=-3x,将l0平移与可行域有公共点,直线y=-3x+z在y轴上的截距最大时,z有最大值,求出此时直线y=-3x+z经过的可行域内的点A的坐标,代入z=3x+y中即可.
解答:解:如图,作出可行域,作出直线l0:y=-3x,将l0平移至过点A(1,2)处时,
函数z=3x+y有最大值5.精英家教网
故答案为:5.
点评:本题考查线性规划问题,考查数形结合思想.解答的步骤是有两种方法:一种是:画出可行域画法,标明函数几何意义,得出最优解.另一种方法是:由约束条件画出可行域,求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证,求出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设实数x,y满足 
x-y-2≤0
x+2y-5≥0
y-2≤0
,则u=
x2+y2
xy
的取值范围是(  )
A、[2,
5
2
]
B、[
5
2
10
3
]
C、[2,
10
3
]
D、[
1
4
,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足
x≤3
x-y+2≥0
x+y-4≥0
,则x2+y2的取值范围是
[8,34]
[8,34]

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,则
y
x
的最大值是
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,则z=
x
y
的最小值是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)设实数x,y满足
x+2y-4≤0
x-y≥0
y>0
,则x-2y的最大值为
4
4

查看答案和解析>>

同步练习册答案