精英家教网 > 高中数学 > 题目详情
求圆心在直线上,与x轴相切,且被直线截得的弦长为的圆的方程.
因为圆心在直线上,设圆心为
因为圆与轴相切,所以半径长
因为圆被直线截得的弦长为
所以圆心到直线的距离
平方整理得,解得
所以圆心为,半径长
所以圆的方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

m>0,则直线xy+1+m=0与圆x2y2m的位置关系是(  )
A.相切B.相交C.相切或相离D.相交或相切

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

、若直线与曲线恰有一个公共点,则实数的值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程有两个不相等的实根,则实数k的取值范围是(     )
【提示:观察并画出方程左右两边式子对应的曲线,利用数形结合】
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,圆内有一点P(-1,2),弦AB为过点P.
(1) 当弦AB被点P平分时,求出直线AB的方程;
(2) 设过P点的弦的中点为,求点的坐标所满足的关系式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过原点且倾斜角为的直线被圆所截得的弦长为 (   )
A.B.2 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(文)若直线与圆有唯一的公共点,则实数    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

经过点(0,-1)作圆的切线,切点分别为A和B,点Q是圆C上一点,则面积的最大值为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆,点)是圆内一点,过点的圆的最短弦所在的直线为,直线的方程为,那么
A.,且与圆相离B.,且与圆相切
C.,且与圆相交D.,且与圆相离

查看答案和解析>>

同步练习册答案