(本小题满分12分)四棱锥
中,底面
为矩形,侧面
底面
,
,
,
.
![]()
(Ⅰ)证明:
;
(Ⅱ)设
与平面
所成的角为
,
求二面角
的余弦值.
(I)见解析;(II)二面角C-AD-E的余弦值为
。
【解析】本试题主要是考查了线线垂直的证明以及二面角的大小的求解的综合运用。
(1I)作AO⊥BC,垂足为O,连接OD,由题设知,AO⊥底面BCDE,且OBC
中点,由
知,Rt△OCD∽Rt△CDE,
从而∠ODC=∠CED,于是CE⊥OD,
由三垂线定理知,AD⊥CE
(II)由题意,BE⊥BC,所以BE⊥侧面ABC,又BE
侧面ABE,所以侧面ABE⊥侧
面ABC。
作CF⊥AB,垂足为F,连接FE,则CF⊥平面ABE故∠CEF为CE与平面ABE所成的角,
∠CEF=45°,由CE=
,得CF=![]()
又BC=2,因而∠ABC=60°,所以△ABC为等边三角形作CG⊥AD,垂足为G,连GE。
由(I)知,CE⊥AD,又CE∩CG=C,
故AD⊥平面CGE,AD⊥GE,∠CGE是二面角C-AD-E的平面角。
进而解得。
解法一:(I)作AO⊥BC,垂足为O,连接OD,由题设知,AO⊥底面BCDE,且OBC
中点,由
知,Rt△OCD∽Rt△CDE,从而∠ODC=∠CED,于是CE⊥OD,
由三垂线定理知,AD⊥CE--------------------------------4分
![]()
(II)由题意,BE⊥BC,所以BE⊥侧面ABC,又BE
侧面ABE,所以侧面ABE⊥侧
面ABC。
作CF⊥AB,垂足为F,连接FE,则CF⊥平面ABE故∠CEF为CE与平面ABE所成的角,
∠CEF=45°,由CE=
,得CF=![]()
又BC=2,因而∠ABC=60°,所以△ABC为等边三角形作CG⊥AD,垂足为G,连GE。
由(I)知,CE⊥AD,又CE∩CG=C,
故AD⊥平面CGE,AD⊥GE,∠CGE是二面角C-AD-E的平面角。
CG=![]()
GE=![]()
cos∠CGE=![]()
所以二面角C-AD-E的余弦值为
---------------------12分
解法二:
(I)作AO⊥BC,垂足为O,则AO⊥底面BCDE,且O为BC的中点,以O为坐标原点,射线OC为x轴正向,建立如图所示的直角坐标系O-xyz.,
![]()
设A(0,0,t),由已知条件有C(1,0,0), D(1,
,0),
E(-1,
,0),
,
所以
,得AD⊥CE------------------4分
(II)作CF⊥AB,垂足为F,连接FE,设F(x,0,z)则
=(x-1,0,z),
故CF⊥BE,又AB∩BE=B,所以CF⊥平面ABE,∠CEF是CE与平面ABE所成的角,∠CEF=45°
由CE=
,得CF=
,又CB=2,所以∠FBC=60°,△ABC为等边三角形,
因此A(0,0,
)作CG⊥AD,垂足为G,连接GE,在Rt△ACD中,求得|AG|=
|AD|
故G(
)![]()
又
,![]()
所以
的夹角等于二面角C-AD-E的平面角。
由cos(
)=![]()
知二面角C-AD-E的余弦值为
---------12分
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com