精英家教网 > 高中数学 > 题目详情
10.要得到函数y=sin2(x$-\frac{π}{6}$),x∈R的图象,只需把函数f(x)=sin2x,x∈R的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{12}$个单位
C.向左平移$\frac{π}{6}$个单位D.向左平移$\frac{π}{12}$个单位

分析 由函数 y=Asin(ωx+∅)的图象变换规律即可得解.

解答 解:把函数y=sin2x的图象向右平移$\frac{π}{6}$个单位即可得到函数 y=sin2(x-$\frac{π}{6}$) 的图象.
故选:A.

点评 本题主要考查函数 y=Asin(ωx+∅)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=1+cos(2x+\frac{3π}{2})-\sqrt{3}cos(π-2x)$.
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程f(x)-m=2在$x∈[{0,\frac{π}{2}}]$上有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求证:(1)$\sqrt{6}$+$\sqrt{7}$>2$\sqrt{2}$+$\sqrt{5}$;     (2)a2+b2+c2≥ab+ac+bc.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知在某项射击测试中,规定每人射击3次,至少2次击中8环以上才能通过测试.若某运动员每次射击击中8环以上的概率为$\frac{2}{3}$,且各次射击相互不影响,则该运动员通过测试的概率为(  )
A.$\frac{20}{27}$B.$\frac{4}{9}$C.$\frac{8}{27}$D.$\frac{6}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列结论正确的是(  )
A.各个面都是三角形的几何体是三棱锥
B.一平面截一棱锥得到一个棱锥和一个棱台
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为v(米/单位时间),单位时间内用氧量为v2;②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为$\frac{v}{2}$(米/单位时间),单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为y.
(1)将y表示为v的函数;
(2)试确定下潜速度v,使总的用氧量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C1的参数方程是$\left\{{\begin{array}{l}{x=2cosϕ}\\{y=sinϕ}\end{array}}$(ϕ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ(tanα•cosθ-sinθ)=1.(其中α为常数,α∈(0,π),且α≠$\frac{π}{2}$),点A,B(A在x轴下方)是曲线C1与C2的两个不同的交点.
(1)求曲线C1的普通方程与C2的直角坐标方程;
(2)求|AB|的最大值及此时点B的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合X是实数集R的子集,如果点x0∈R满足:对任意a>0,都存在x∈X,使得|x-x0|<a,那么称x0为集合X的聚点.用Z表示整数集,则在下列集合:①$\{\frac{n}{n+1}\left|{n∈Z,}\right.n≥0\}$,②{x∈R|x≠0},③$\{\frac{1}{n}\left|{n∈Z,}\right.n≠0\}$,④整数集Z中,以0为聚点的集合有(  )
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x+sinx.x∈(-$\frac{π}{2}$,$\frac{π}{2}$),函数g(x)的定义域为实数集R,函数h(x)=f(x)+g(x),
(1)若函数g(x)是奇函数,判断并证明函数h(x)的奇偶性;
(2)若函数g(x)是单调增函数,用反证法证明函数h(x)的图象与x轴至多有一个交点.

查看答案和解析>>

同步练习册答案