精英家教网 > 高中数学 > 题目详情
9.若x,y满足约束条件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{y≤2x+2}\end{array}}\right.$,则z=2x+y的最大值与最小值和等于(  )
A.-4B.-2C.2D.6

分析 由约束条件作出可行域,数形结合得到最优解,把最优解的坐标分别代入目标函数求得最小值和最大值,则z=2x+y的最大值和最小值之和可求.

解答 解:由x,y满足约束条件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{y≤2x+2}\end{array}}\right.$,作出可行域如图,

由图可知:A(0,2),由$\left\{\begin{array}{l}{x-2y-2=0}\\{y=2x+2}\end{array}\right.$解得B(-2,-2),
且A,B分别为目标函数z=2x+y取得最大值和最小值的最优解,
则zmin=-2×2-2=-6,zmax=2×0+2=2,
∴z=2x+y的最大值和最小值之和等于-4.
故选:A.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面ABCD边长为4的正方形,PA=PD=2$\sqrt{2}$,平面PAD⊥平面ABCD.
(Ⅰ)求证:平面PAD⊥平面PCD;
(Ⅱ)点E为线段PD上一点,且三棱锥E-BCD的体积为$\frac{8}{3}$,求平面EBC与平面PAB所成锐二面角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若曲线f(x)=x4-x在点P处的切线垂直于直线x-y=0,则点P的坐标为(0,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow a=({\sqrt{3}sinx,cosx})$,$\overrightarrow b=({cosx,cosx})$,f(x)=2$\overrightarrow a•\overrightarrow b+2m-1({x,m∈R})$
(1)当x∈R时,f(x)有最大值6,求m的值;
(2)在(1)的条件下,求f(x)单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}是等差数列,其前n项和为Sn,数列{bn}是等比数列,且a1=b1=2,a4+b4=27,s4-b4=10
(1)求数列{an}与{bn}的通项公式;
(2)设cn=an•bn,求数列{cn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=${∫}_{0}^{1}$xdx,b=1-${∫}_{0}^{1}$$\sqrt{x}$dx,c=${∫}_{0}^{1}$x3dx,则a,b,c的大小关系(  )
A.b>c>aB.b>a>cC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数${({\frac{1}{2}+\frac{{\sqrt{3}}}{2}i})^3}$的共轭复数是(  )
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某中学调查了某班全部50名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团未参加书法社团
参加演讲社团86
未参加演讲社团630
(I)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;
(II)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3,现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知命题p:方程a2x2+ax-2=0在区间[0,1]上有解,命题q:对于?x∈R,不等式sinx+cosx>a恒成立.若命题p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案