| A. | -4 | B. | -2 | C. | 2 | D. | 6 |
分析 由约束条件作出可行域,数形结合得到最优解,把最优解的坐标分别代入目标函数求得最小值和最大值,则z=2x+y的最大值和最小值之和可求.
解答
解:由x,y满足约束条件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{y≤2x+2}\end{array}}\right.$,作出可行域如图,
由图可知:A(0,2),由$\left\{\begin{array}{l}{x-2y-2=0}\\{y=2x+2}\end{array}\right.$解得B(-2,-2),
且A,B分别为目标函数z=2x+y取得最大值和最小值的最优解,
则zmin=-2×2-2=-6,zmax=2×0+2=2,
∴z=2x+y的最大值和最小值之和等于-4.
故选:A.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b>c>a | B. | b>a>c | C. | a>c>b | D. | a>b>c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 参加书法社团 | 未参加书法社团 | |
| 参加演讲社团 | 8 | 6 |
| 未参加演讲社团 | 6 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com