【题目】m为何值时,
.
(1)有且仅有一个零点;
(2)有两个零点且均比-1大.
【答案】(1) m=4或m=-1. (2) m的取值范围为(-5,-1)
【解析】
本试题主要是考查了函数的零点,利用方程的解得到零点的证明。
(1)f(x)=x2+2mx+3m+4有且仅有一个零点方程f(x)=0有两个相等实根Δ=0,解得。
(2)设f(x)的两个零点分别为x1,x2,
则x1+x2=-2m,x1·x2=3m+4.
利用韦达定理和判别式得到范围。
解 (1)f(x)=x2+2mx+3m+4有且仅有一个零点方程f(x)=0有两个相等实根Δ=0,即4m2-4(3m+4)=0,即m2-3m-4=0,
∴m=4或m=-1. ……………… 5分
(2)设f(x)的两个零点分别为x1,x2,
则x1+x2=-2m,x1·x2=3m+4.
由题意,在![]()
![]()
![]()
∴-5<m<-1.故m的取值范围为(-5,-1).………………12分
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)过椭圆
左焦点的直线
与椭圆
交于
两点,直线
过坐标原点且直线
与
的斜率互为相反数,直线
与椭圆交于
两点且均不与点
重合,设直线
的斜率为
,直线
的斜率为
.证明:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,若函数
有三个不同的零点
,
,
(其中
),则
的取值范围为__________.
【答案】![]()
【解析】如图:![]()
![]()
,
,作出函数图象如图所示
,
,作出函数图象如图所示
![]()
,由
有三个不同的零点
,如图
令![]()
![]()
得![]()
![]()
为满足有三个零点,如图可得
,![]()
![]()
![]()
点睛:本题考查了函数零点问题,先由导数求出两个函数的单调性,继而画出函数图像,再由函数的零点个数确定参量取值范围,将问题转化为函数的两根问题来求解,本题需要化归转化,函数的思想,零点问题等较为综合,有很大难度。
【题型】填空题
【结束】
17
【题目】已知等比数列
的前
项和为
,且满足
.
(1)求数列
的通项公式;
(2)若数列
满足
,求数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图一块长方形区域ABCD,AD=2(km),AB=1(km).在边AD的中点O处,有一个可转动的探照灯,其照射角∠EOF始终为
,设∠AOE=
,探照灯O照射在长方形ABCD内部区域的面积为S.
![]()
(1)当0≤![]()
时,写出S关于
的函数表达式;
(2)若探照灯每9分钟旋转“一个来回”(OE自OA转到OC,再回到OA,称“一个来回”,忽略OE在OA及OC反向旋转时所用时间),且转动的角速度大小一定,设AB边上有一点G,且∠AOG
,求点G在“一个来回”中,被照到的时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于
,②
,③
,④
,⑤
与⑥
,选择恰当的关系式序号填空:
(1)角
为第一象限角的充要条件是_____;
(2)角
为第二象限角的充要条件是_____;
(3)角
为第三象限角的充要条件是_____;
(4)角
为第四象限角的充要条件是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在
上的函数
满足:对于任意实数
都有
恒成立,且当
时,
.
(Ⅰ)判定函数
的单调性,并加以证明;
(Ⅱ)设
,若函数
有三个零点从小到大分别为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区工会利用 “健步行
”开展健步走积分奖励活动.会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分).记年龄不超过40岁的会员为
类会员,年龄大于40岁的会员为
类会员.为了解会员的健步走情况,工会从
两类会员中各随机抽取
名会员,统计了某天他们健步走的步数,并将样本数据分为
,
,
,
,
,
,
,
,
九组,将抽取的
类会员的样本数据绘制成频率分布直方图,
类会员的样本数据绘制成频率分布表(图、表如下所示).
![]()
(Ⅰ)求
和
的值;
(Ⅱ)从该地区
类会员中随机抽取
名,设这
名会员中健步走的步数在
千步以上(含
千步)的人数为
,求
的分布列和数学期望;
(Ⅲ)设该地区
类会员和
类会员的平均积分分别为
和
,试比较
和
的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用适当的方法表示下列集合:
(1)一年中有31天的月份的全体;
(2)大于
小于12.8的整数的全体;
(3)梯形的全体构成的集合;
(4)所有能被3整除的数的集合;
(5)方程
的解组成的集合;
(6)不等式
的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com