【题目】如图,四棱台
中,
底面
,平面
平面
为
的中点.
(1)证明:
;
(2)若
,且
,求点
到平面
的距离.
![]()
【答案】(1)证明见解析;(2)
.
【解析】试题分析:(1)先根据平几知识计算得到
,再根据面面垂直性质定理得线面垂直
平面
即得
;(2)利用等体积法可将点面距离转化为求高,也可直接作出垂线,再在三角形中求解.因为
平面
, 所以平面
平面
,过点
作
,交
于点
,则
平面
,最后解三角形即可.
试题解析:(1)证明:连接
,
∵
为四棱台,四边形
四边形
,
∴
,由
得,
,
又∵
底面
,∴四边形
为直角梯形,可求得
,
又
为
的中点,所以
,
又∵平面
平面
,平面
平面
,
∴
平面
平面
,
∴
;
(2)解:
![]()
在
中,
,利用余弦定理可求得,
或
,由于
,所以
,从而
,知
,
又∵
底面
,则平面
底面
为交线,
∴
平面
,所以
,由(1)知
,
∴
平面
(连接
),
∴平面
平面
,过点
作
,交
于点
,
则
平面
,
在
中可求得
,所以
,
所以,点
到平面
的距离为
.
科目:高中数学 来源: 题型:
【题目】已知函数
的部分图象如图所示,则下列判断正确的是( )
![]()
A. 函数的图象关于点
对称
B. 函数的图象关于直线
对称
C. 函数
的最小正周期为![]()
D. 当
时,函数
的图象与直线
围成的封闭图形面积为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,直线
与圆
相交于不同的两点
,点
是线段
的中点。
(1)求直线
的方程;
(2)是否存在与直线
平行的直线
,使得
与与圆
相交于不同的两点
,
不经过点
,且
的面积
最大?若存在,求出
的方程及对应的
的面积S;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对数函数g(x)=1ogax(a>0,a≠1)和指数函数f(x)=ax(a>0,a≠1)互为反函数.已知函数f(x)=3x,其反函数为y=g(x).
(Ⅰ)若函数g(kx2+2x+1)的定义域为R,求实数k的取值范围;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定义在I上的函数F(x),如果满足:对任意x∈I,总存在常数M>0,都有-M≤F(x)≤M成立,则称函数F(x)是I上的有界函数,其中M为函数F(x)的上界.若函数h(x)=
,当m≠0时,探求函数h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)当
时,求曲线
在点
处的切线方程;
(2)当
时,求
在区间
上的最大值和最小值;
(3)当
时,若方程
在区间
上有唯一解,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,关于函数
的性质,有以下四个推断:
①
的定义域是
;
②
的值域是
;
③
是奇函数;
④
是区间(0,2)内的增函数.
其中推断正确的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区工会利用 “健步行
”开展健步走积分奖励活动.会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分).记年龄不超过40岁的会员为
类会员,年龄大于40岁的会员为
类会员.为了解会员的健步走情况,工会从
两类会员中各随机抽取
名会员,统计了某天他们健步走的步数,并将样本数据分为
,
,
,
,
,
,
,
,
九组,将抽取的
类会员的样本数据绘制成频率分布直方图,
类会员的样本数据绘制成频率分布表(图、表如下所示).
![]()
(Ⅰ)求
和
的值;
(Ⅱ)从该地区
类会员中随机抽取
名,设这
名会员中健步走的步数在
千步以上(含
千步)的人数为
,求
的分布列和数学期望;
(Ⅲ)设该地区
类会员和
类会员的平均积分分别为
和
,试比较
和
的大小(只需写出结论).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com