精英家教网 > 高中数学 > 题目详情
15.已知集合$A=\left\{{y|y={x^2}-\frac{3}{2}x+1,x∈[{-\frac{1}{2},2}]}\right\},B=\left\{{x||{x-m}|≥1}\right\}$,若t∈A是t∈B的充分不必要条件,求实数m的取值范围.

分析 利用二次函数的单调性、不等式的解法分别化简集合A,B,利用充分不必要条件的意义即可得出.

解答 解:对于A:$x∈[-\frac{1}{2},2]$,f(x)=y=$(x-\frac{3}{4})^{2}$+$\frac{7}{16}$,$f(-\frac{1}{2})$=2,f(2)=2,∴f(x)∈$[\frac{7}{16},2]$=A.
对于B:x≥1+m或x≤m-1.即B=(-∞,m-1]∪[m+1,+∞).
∵t∈A是t∈B的充分不必要条件,
∴$\frac{7}{16}$≥m+1,或2≤m-1,
解得m≤-$\frac{9}{16}$,或m≥3.
∴实数m的取值范围是$(-∞,-\frac{9}{16}]$∪[3,+∞).

点评 本题考查了简易逻辑的判定方法、二次函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知$\sqrt{3}$acosB=bsinA.
(1)求角B的大小;
(2)若△ABC的面积S=$\frac{\sqrt{3}}{4}$b2,求$\frac{a}{c}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>b,c∈R,则(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.|a|>|b|C.a3>b3D.ac>bc

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=\frac{{\;{2^x}}}{{\sqrt{1-x}}}+{log_3}(2x-1)$的定义域是(  )
A.$(\frac{1}{2}\;,\;1)$B.$[\frac{1}{2}\;,\;1)$C.(1,+∞)D.$(\frac{1}{2},\;1]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(Ⅰ)求${(-\frac{7}{8})^0}+{(\frac{1}{8})^{-\;\;\frac{1}{3}}}+\root{4}{{{{(3-π)}^4}}}$的值;
(Ⅱ)求${7^{{{log}_7}2}}+lg25+2lg2-ln\sqrt{e^3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B-cos2C-sin2A=sinAsinB.
(1)求角C;
(2)向量$\overrightarrow{m}$=(sinA,cosB),$\overrightarrow{n}$=(cosx,sinx),若函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的图象关于直线x=$\frac{π}{3}$对称,求角A,B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$α∈(\frac{5}{4}π\;,\;\frac{3}{2}π)$,且满足$tanα+\frac{1}{tanα}=8$,则sinαcosα=$\frac{1}{8}$;sinα-cosα=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\sqrt{3}sin2x-2{cos^2}x$.
(1)求$f(\frac{π}{6})$的值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=(sinx+cosx)2-$\sqrt{3}$cos2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在[0,$\frac{π}{2}$]上的最大值,以及取得最大值时对应x的值.

查看答案和解析>>

同步练习册答案