精英家教网 > 高中数学 > 题目详情
5.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知$\sqrt{3}$acosB=bsinA.
(1)求角B的大小;
(2)若△ABC的面积S=$\frac{\sqrt{3}}{4}$b2,求$\frac{a}{c}$的值.

分析 (1)由正弦定理化简已知等式可得:$\sqrt{3}$sinAcosB=sinBsinA,由于sinA≠0,可得:tanB=$\sqrt{3}$,结合范围B∈(0,π),可求B的值.
(2)由三角形面积公式可求b2=ac,进而利用余弦定理可得2ac=a2+c2,即可解得$\frac{a}{c}$的值.

解答 解:(1)∵$\sqrt{3}$acosB=bsinA.
∴由正弦定理可得:$\sqrt{3}$sinAcosB=sinBsinA.
∵A∈(0,π),sinA≠0,
∴解得:$\sqrt{3}$cosB=sinB,可得:tanB=$\sqrt{3}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$.
(2)∵B=$\frac{π}{3}$,△ABC的面积S=$\frac{\sqrt{3}}{4}$b2=$\frac{1}{2}$acsinB=$\frac{1}{2}×ac×\frac{\sqrt{3}}{2}$,
∴b2=ac,
又∵由余弦定理可得:b2=a2+c2-2accosB=a2+c2-ac,可得:2ac=a2+c2
∴($\frac{a}{c}$)2-2×$\frac{a}{c}$+1=0,解得:$\frac{a}{c}$=1.

点评 本题主要考查了正弦定理,三角形面积公式,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设定义在[-π,π]上的函数f(x)=cosx-4x2,则不等式f(lnx)+π2>0的解集是(0,${e}^{-\frac{π}{2}}$)∪(${e}^{\frac{π}{2}}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}中,a1=2,an+1=an+cn(n=1,2,3,…),且a2=2a1
(1)求常数c的值;
(2)求数列{an}的通项公式;
(3)求数列{$\frac{{a}_{n}-c}{n•{c}^{n}}$}的前n项之和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中正确的是(  )
A.空间任三点可以确定一个平面
B.垂直于同一条直线的两条直线必互相平行
C.空间不平行的两条直线必相交
D.既不相交也不平行的两条直线是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}为正项等比数列,且满足a1+$\frac{1}{2}$a2=4,a32=$\frac{1}{4}$a2a6;设正项数列{bn}的前n项和为Sn,且满足Sn=$\frac{({{b}_{n}+1)}^{2}}{4}$.
(1)求{an}和{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在正方体ABCD-A1B1C1D1中,异面直线A1B与CC1所成角的大小为(  )
A.60°B.30°C.90°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设p:“方程x2+y2=4-a表示圆”,q:“方程$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{a+1}$=1表示焦点在x轴上的双曲线”,如果p和q都正确,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知{an}是等比数列,a1=2,a4=16,则数列{an}的公比q等于(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合$A=\left\{{y|y={x^2}-\frac{3}{2}x+1,x∈[{-\frac{1}{2},2}]}\right\},B=\left\{{x||{x-m}|≥1}\right\}$,若t∈A是t∈B的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案