分析 (1)利用递推关系即可得出.
(2)利用“累加求和”方法即可得出.
(3)利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:(1)∵a1=2,an+1=an+cn(n=1,2,3,…),∴a2=a1+c=2+c,
又a2=2a1,∴2+c=2×2,解得c=2.
(2)由(1)可得:an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2[(n-1)+(n-2)+…+1]+2=$2×\frac{(n-1)(n-1+1)}{2}$+2=n2-n+2.
(3)$\frac{{a}_{n}-c}{n•{c}^{n}}$=$\frac{{n}^{2}-n+2-2}{n•{2}^{n}}$=$\frac{n-1}{{2}^{n}}$.
数列{$\frac{{a}_{n}-c}{n•{c}^{n}}$}的前n项之和Tn=0+$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+$\frac{3}{{2}^{4}}$…+$\frac{n-1}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=0+$\frac{1}{{2}^{3}}+\frac{2}{{2}^{4}}$+…+$\frac{n-2}{{2}^{n}}$+$\frac{n-1}{{2}^{n+1}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n-1}{{2}^{n+1}}$=$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{n-1}{{2}^{n+1}}$=$\frac{1}{2}-\frac{n+1}{{2}^{n+1}}$,
∴Tn=1-$\frac{n+1}{{2}^{n}}$.
点评 本题考查了递推关系、“累加求和”方法、“错位相减法”与等比数列的求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 4 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com