精英家教网 > 高中数学 > 题目详情
6.已知 a>0,b>0,若$\sqrt{3}$是3a与3b的等比中项,则$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.8B.4C.1D.2

分析 $\sqrt{3}$是3a与3b的等比中项,可得3a•3b=$(\sqrt{3})^{2}$,即a+b=1.再利用“乘1法”与基本不等式的性质即可得出.

解答 解:a>0,b>0,$\sqrt{3}$是3a与3b的等比中项,∴3a•3b=$(\sqrt{3})^{2}$,解得a+b=1.
则$\frac{1}{a}+\frac{1}{b}$=(a+b)$(\frac{1}{a}+\frac{1}{b})$=2+$\frac{b}{a}+\frac{a}{b}$$≥2+2\sqrt{\frac{a}{b}•\frac{b}{a}}$=4,当且仅当a=b=$\frac{1}{2}$时取等号.
∴$\frac{1}{a}+\frac{1}{b}$的最小值为4.
故选:B.

点评 本题考查了基本不等式的性质、指数的运算性质、等比数列的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某校园内有一块三角形绿地AEF(如图1),其中AE=20m,AF=10m,∠EAF=$\frac{2π}{3}$,绿地内种植有一呈扇形AMN的花卉景观,扇形AMN的两边分别落在AE和AF上,圆弧MN与EF相切于点P.
(1)求扇形花卉景观的面积;
(2)学校计划2017年年整治校园环境,为美观起见,设计在原有绿地基础上扩建成平行四边形ABCD(如图2),其中∠BAD=$\frac{2π}{3}$,并种植两块面积相同的扇形花卉景观,两扇形的边都分别落在平行四边形ABCD的边上,圆弧都与BD相切,若扇形的半径为8m,求平行四边形ABCD绿地占地面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和直线l:$\frac{x}{a}$-$\frac{y}{b}$=1,椭圆的离心率e=$\frac{\sqrt{6}}{3}$,坐标原点到直线l的距离为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知定点E(-1,0),若直线m过点P(0,2)且与椭圆相交于C,D两点,试判断是否存在直线m,使以CD为直径的圆过点E?若存在,求出直线m的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列三个命题:
①“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0”,则a2+b2≠0”;
②“$m=\frac{1}{2}$”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充分不必要条件;
③已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线经过点(1,2),则该双曲线的离心率的值为$\sqrt{5}$.
上述命题中真命题的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设x>0,y>0且x+4y=40,则lgx+lgy的最大值是(  )
A.40B.10C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数$f(x)=sin(ωx+φ)-\sqrt{3}cos(ωx+φ)$($ω>0,|φ|<\frac{π}{2}$)的最小正周期为π,且f(x)为奇函数,则(  )
A.f(x)在$(0,\frac{π}{2})$单调递减B.f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递减
C.f(x)在$(0,\frac{π}{2})$单调递增D.f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),点$A(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$在椭圆C上.
(1)求椭圆C的标准方程;
(2)是否存在斜率为2的直线l,使得当直线l与椭圆C有两个不同交点M,N时,能在直线$y=\frac{5}{3}$上找到一点P,在椭圆C上找到一点Q,满足$\overrightarrow{PM}=\overrightarrow{NQ}$?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设定义在[-π,π]上的函数f(x)=cosx-4x2,则不等式f(lnx)+π2>0的解集是(0,${e}^{-\frac{π}{2}}$)∪(${e}^{\frac{π}{2}}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}中,a1=2,an+1=an+cn(n=1,2,3,…),且a2=2a1
(1)求常数c的值;
(2)求数列{an}的通项公式;
(3)求数列{$\frac{{a}_{n}-c}{n•{c}^{n}}$}的前n项之和Tn

查看答案和解析>>

同步练习册答案