精英家教网 > 高中数学 > 题目详情
1.设x>0,y>0且x+4y=40,则lgx+lgy的最大值是(  )
A.40B.10C.4D.2

分析 利用基本不等式的性质、对数的运算性质即可得出.

解答 解:∵x>0,y>0且x+4y=40,∴40$≥2\sqrt{x•4y}$,化为:xy≤100,当且仅当x=4y=20时取等号.
则lgx+lgy=lg(xy)≤lg100=2,因此其最大值是2.
故选:D.

点评 本题考查了基本不等式的性质、对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数y=sinx(x∈[m,n]),值域为$[-\frac{1}{2},1]$,则n-m的最大值为$\frac{4π}{3}$,最小值为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛物线y2=2px(p>0)的焦点为圆x2+y2-6x=0的圆心,过圆心且斜率为2的直线l与抛物线相交于M,N两点,则|MN|=(  )
A.30B.25C.20D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,F是椭圆的右焦点,A为左顶点,点P在椭圆上,PF⊥x轴,若$|{PF}|=\frac{1}{4}|{AF}|$,则椭圆的离心率为(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:-x2+8x+20≥0;命题q:x2+2x+1-4m2≤0.
(1)当m∈R时,解不等式x2+2x+1-4m2≤0;
(2)当m>0时,若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知 a>0,b>0,若$\sqrt{3}$是3a与3b的等比中项,则$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.8B.4C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知球的半径为4,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为4,则两圆的圆心距等于(  )
A.2B.$2\sqrt{2}$C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=2sin(x-$\frac{π}{4}$)在[0,2π]内的递减区间是[$\frac{3π}{4}$,$\frac{7π}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=3sinφ}\end{array}\right.$(φ为参数).
(1)将C的方程化为普通方程;
(2)若点P(x,y)是曲线C上的动点,求2x+y的取值范围.

查看答案和解析>>

同步练习册答案