精英家教网 > 高中数学 > 题目详情
9.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,F是椭圆的右焦点,A为左顶点,点P在椭圆上,PF⊥x轴,若$|{PF}|=\frac{1}{4}|{AF}|$,则椭圆的离心率为(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

分析 由题意画出图形,求出椭圆半通径长,代入$|{PF}|=\frac{1}{4}|{AF}|$,化为关于e的方程求解.

解答 解:如图,

∵PF⊥x轴,∴|PF|=$\frac{{b}^{2}}{a}$,而|AF|=a+c,
∴由$|{PF}|=\frac{1}{4}|{AF}|$,得$\frac{{b}^{2}}{a}=\frac{1}{4}(a+c)$,
即4(a2-c2)=a2+ac,∴4e2+e-3=0,解得e=-1(舍)或e=$\frac{3}{4}$.
故选:A.

点评 本题考查椭圆的简单性质,熟记椭圆通径是解题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=loga(ax+1)+bx(a>0且a≠1,b∈R)的图象关于y轴对称,且满足f(0)=1.
(Ⅰ)求a、b的值;
(Ⅱ)若函数g(x)=f(x)-$\frac{1}{2}$x+c在[0,1]上存在零点,求实数c的取值范围;
(Ⅲ)若函数φ(x)=2f(2x)+x+λ×2x-1(x∈-1,2]),是否存在实数λ使得φ(x)的最小值为-1,若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,抛物线C:y2=2px的焦点为F,抛物线上一定点Q(1,2).
(1)求抛物线C的方程及准线l的方程;
(2)过焦点F的直线(不经过Q点)与抛物线交于A,B两点,与准线l交于点M,记QA,QB,QM的斜率分别为k1,k2,k3,问是否存在常数λ,使得k1+k2=λk3成立?若存在λ,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和直线l:$\frac{x}{a}$-$\frac{y}{b}$=1,椭圆的离心率e=$\frac{\sqrt{6}}{3}$,坐标原点到直线l的距离为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知定点E(-1,0),若直线m过点P(0,2)且与椭圆相交于C,D两点,试判断是否存在直线m,使以CD为直径的圆过点E?若存在,求出直线m的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若命题p:α是第一象限角;命题q:α是锐角,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列三个命题:
①“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0”,则a2+b2≠0”;
②“$m=\frac{1}{2}$”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充分不必要条件;
③已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线经过点(1,2),则该双曲线的离心率的值为$\sqrt{5}$.
上述命题中真命题的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设x>0,y>0且x+4y=40,则lgx+lgy的最大值是(  )
A.40B.10C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),点$A(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$在椭圆C上.
(1)求椭圆C的标准方程;
(2)是否存在斜率为2的直线l,使得当直线l与椭圆C有两个不同交点M,N时,能在直线$y=\frac{5}{3}$上找到一点P,在椭圆C上找到一点Q,满足$\overrightarrow{PM}=\overrightarrow{NQ}$?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P(2,1)与Q关于原点O对称,直线PM,QM相交于点M,且它们的斜率之积是-$\frac{1}{4}$
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过P作直线l交轨迹C于另一点A,求DPAO的面积的取值范围.

查看答案和解析>>

同步练习册答案