17£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ºÍÖ±Ïßl£º$\frac{x}{a}$-$\frac{y}{b}$=1£¬ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{\sqrt{6}}{3}$£¬×ø±êÔ­µãµ½Ö±ÏßlµÄ¾àÀëΪ$\frac{\sqrt{3}}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÒÑÖª¶¨µãE£¨-1£¬0£©£¬ÈôÖ±Ïßm¹ýµãP£¨0£¬2£©ÇÒÓëÍÖÔ²ÏཻÓÚC£¬DÁ½µã£¬ÊÔÅжÏÊÇ·ñ´æÔÚÖ±Ïßm£¬Ê¹ÒÔCDΪֱ¾¶µÄÔ²¹ýµãE£¿Èô´æÔÚ£¬Çó³öÖ±ÏßmµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{\sqrt{6}}{3}$£¬×ø±êÔ­µãµ½Ö±Ïßl£º$\frac{x}{a}$-$\frac{y}{b}$=1µÄ¾àÀëΪ$\frac{\sqrt{3}}{2}$£¬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²·½³Ì£®
£¨¢ò£©µ±Ö±ÏßmµÄбÂʲ»´æÔÚʱ£¬Ö±Ïßm·½³ÌΪx=0£¬ÒÔCDΪֱ¾¶µÄÔ²¹ýµãE£»µ±Ö±ÏßmµÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïßm·½³ÌΪy=kx+2£¬ÓÉ$\left\{{\begin{array}{l}{y=kx+2}\hfill\\{\frac{x^2}{3}+{y^2}=1}\hfill\end{array}}\right.$£¬µÃ£¨1+3k2£©x2+12kx+9=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Ô²µÄÐÔÖÊ£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öµ±ÒÔCDΪֱ¾¶µÄÔ²¹ý¶¨µãEʱ£¬Ö±ÏßmµÄ·½³Ì£®

½â´ð ½â£º£¨¢ñ£©ÓÉÖ±Ïß$l£º\frac{x}{a}-\frac{y}{b}=1$£¬¡à$\frac{{\sqrt{3}}}{2}=\frac{|ab|}{{\sqrt{{a^2}+{b^2}}}}$£¬¼´4a2b2=3a2+3b2--¢Ù
ÓÖÓÉ$e=\frac{{\sqrt{6}}}{3}$£¬µÃ$\frac{c^2}{a^2}=\frac{2}{3}$£¬¼´${c^2}=\frac{2}{3}{a^2}$£¬ÓÖ¡ßa2=b2+c2£¬¡à${b^2}=\frac{1}{3}{a^2}$--¢Ú
½«¢Ú´úÈë¢ÙµÃ£¬¼´$\frac{4}{3}{a^4}=4{a^2}$£¬¡àa2=3£¬b2=2£¬c2=1£¬
¡àËùÇóÍÖÔ²·½³ÌÊÇ$\frac{x^2}{3}+{y^2}=1$£»
£¨¢ò£©¢Ùµ±Ö±ÏßmµÄбÂʲ»´æÔÚʱ£¬Ö±Ïßm·½³ÌΪx=0£¬
ÔòÖ±ÏßmÓëÍÖÔ²µÄ½»µãΪ£¨0£¬¡À1£©£¬ÓÖ¡ßE£¨-1£¬0£©£¬
¡à¡ÏCED=90¡ã£¬¼´ÒÔCDΪֱ¾¶µÄÔ²¹ýµãE£»
¢Úµ±Ö±ÏßmµÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïßm·½³ÌΪy=kx+2£¬C£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬
ÓÉ$\left\{{\begin{array}{l}{y=kx+2}\hfill\\{\frac{x^2}{3}+{y^2}=1}\hfill\end{array}}\right.$£¬µÃ£¨1+3k2£©x2+12kx+9=0£¬
ÓÉ¡÷=144k2-4¡Á9£¨1+3k2£©=36k2-36£¾0£¬µÃk£¾1»òk£¼-1£¬
¡à${x_1}+{x_2}=\frac{-12k}{{1+3{k^2}}}$£¬${x_1}{x_2}=\frac{9}{{1+3{k^2}}}$£¬
¡ày1y2=£¨kx1+2£©£¨kx2+2£©=k2x1x2+2k£¨x1+x2£©+4
¡ßÒÔCDΪֱ¾¶µÄÔ²¹ýµãE£¬¡àEC¡ÍED£¬¼´$\overrightarrow{EC}•\overrightarrow{ED}=0$£¬
ÓÉ$\overrightarrow{EC}=£¨{x_1}+1£¬{y_1}£©$£¬$\overrightarrow{ED}=£¨{x_2}+1£¬{y_2}£©$£¬
µÃ£¨x1+1£©£¨x2+1£©+y1y2=0£¬¡à£¨1+k2£©x1x2+£¨2k+1£©£¨x1+x2£©+5=0£¬
¡à$\frac{{9£¨1+{k^2}£©}}{{1+3{k^2}}}+£¨2k+1£©•\frac{-12k}{{1+3{k^2}}}+5=0$£¬½âµÃ$k=\frac{7}{6}£¾1$£¬¼´$m£ºy=\frac{7}{6}x+2$£»
×ÛÉÏËùÊö£¬µ±ÒÔCDΪֱ¾¶µÄÔ²¹ý¶¨µãEʱ£¬Ö±ÏßmµÄ·½³ÌΪx=0»ò$y=\frac{7}{6}x+2$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÌõ¼þµÄÖ±ÏßÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²¡¢¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Ö±ÏßÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èôº¯Êýf£¨x£©=5cos£¨¦Øx+¦Õ£©¶ÔÈÎÒâx¶¼ÓÐf£¨$\frac{¦Ð}{6}$+x£©=f£¨$\frac{¦Ð}{6}$-x£©£¬Ôòf£¨$\frac{¦Ð}{6}$£©µÄֵΪ£¨¡¡¡¡£©
A£®0B£®5C£®-5D£®¡À5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼһ£¬Ôڱ߳¤Îª2µÄµÈ±ßÈý½ÇÐÎABCÖУ¬D¡¢E¡¢F·Ö±ðÊÇBC¡¢AB¡¢ACµÄÖе㣬½«¡÷ABDÑØADÕÛÆð£¬µÃµ½Èçͼ¶þËùʾµÄÈýÀâ×¶A-BCD£¬ÆäÖÐ$BC=\sqrt{2}$£®
£¨1£©Ö¤Ã÷£ºAD¡ÍBC£»
£¨2£©ÇóËÄÀâ×¶D-EFCBµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬µãPΪԲE£º£¨x-1£©2+y2=r2£¨r£¾1£©ÓëxÖáµÄ×󽻵㣬¹ýµãP×÷ÏÒPQ£¬Ê¹PQÓëyÖá½»ÓÚPQµÄÖеãD£®
£¨¢ñ£©µ±rÔÚ£¨1£¬+¡Þ£©Äڱ仯ʱ£¬ÇóµãQµÄ¹ì¼£·½³Ì£»
£¨¢ò£©ÒÑÖªµãA£¨-1£¬1£©£¬ÉèÖ±ÏßAQ£¬EQ·Ö±ðÓ루¢ñ£©ÖеĹ켣½»ÓÚÁíÒ»µãQ1£¬Q2£¬ÇóÖ¤£ºµ±QÔÚ£¨¢ñ£©ÖеĹ켣ÉÏÒÆ¶¯Ê±£¬Ö»ÒªQ1£¬Q2¶¼´æÔÚ£¬ÇÒQ1£¬Q2²»Öغϣ¬ÔòÖ±ÏßQ1Q2ºã¹ý¶¨µã£¬²¢Çó¸Ã¶¨µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Å×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãΪԲx2+y2-6x=0µÄÔ²ÐÄ£¬¹ýÔ²ÐÄÇÒбÂÊΪ2µÄÖ±ÏßlÓëÅ×ÎïÏßÏཻÓÚM£¬NÁ½µã£¬Ôò|MN|=£¨¡¡¡¡£©
A£®30B£®25C£®20D£®15

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=a-x2£¨1¡Üx¡Ü2£©Óëg£¨x£©=2x+1µÄͼÏóÉÏ´æÔÚ¹ØÓÚxÖá¶Ô³ÆµÄµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-2£¬-1]B£®[-1£¬1]C£®[1£¬3]D£®[3£¬+¡Þ]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$£¬FÊÇÍÖÔ²µÄÓÒ½¹µã£¬AΪ×󶥵㣬µãPÔÚÍÖÔ²ÉÏ£¬PF¡ÍxÖᣬÈô$|{PF}|=\frac{1}{4}|{AF}|$£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{3}{4}$B£®$\frac{1}{2}$C£®$\frac{{\sqrt{3}}}{2}$D£®$\frac{{\sqrt{2}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖª a£¾0£¬b£¾0£¬Èô$\sqrt{3}$ÊÇ3aÓë3bµÄµÈ±ÈÖÐÏÔò$\frac{1}{a}+\frac{1}{b}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®8B£®4C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªº¯Êýy=f£¨x£©ÊÇRÉÏµÄÆæº¯Êý£¬Âú×ãf£¨4+x£©=f£¨-x£©£¬µ±x¡Ê£¨0£¬2£©Ê±£¬f£¨x£©=2x£¬Ôòµ±x¡Ê£¨-4£¬-2£©Ê±£¬f£¨x£©µÈÓÚ-2x+4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸