精英家教网 > 高中数学 > 题目详情
6.已知a>b,c∈R,则(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.|a|>|b|C.a3>b3D.ac>bc

分析 利用函数f(x)=x3在R单调递增,可知:C正确.再利用不等式的基本性质即可判断出A,B,D不正确.

解答 解:利用函数f(x)=x3在R单调递增,可知:C正确.
a>0>b时,A不正确;取a=-1,b=-2,B不正确.取对于c≤0时,D不正确.
故选:C.

点评 本题考查了不等式的基本性质、函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.数列{an}中,a1=2,an+1=an+cn(n=1,2,3,…),且a2=2a1
(1)求常数c的值;
(2)求数列{an}的通项公式;
(3)求数列{$\frac{{a}_{n}-c}{n•{c}^{n}}$}的前n项之和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设p:“方程x2+y2=4-a表示圆”,q:“方程$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{a+1}$=1表示焦点在x轴上的双曲线”,如果p和q都正确,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知{an}是等比数列,a1=2,a4=16,则数列{an}的公比q等于(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=e2x-t,g(x)=tex-1,对任意x∈R,f(x)≥g(x)恒成立,则实数t的取值范围为(  )
A.t≤1B.t≤2$\sqrt{2}$-2C.t≤2D.t≤2$\sqrt{3}$-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,A,B,C的对边分别为a,b,c,且2cosA•(acosB+bcosA)=c.
(Ⅰ)求A的大小;
(Ⅱ)若△ABC的面积S=10$\sqrt{3}$,a=7,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是偶函数,且在区间(-∞,0]上递增,若$f({2^{2{x^2}-x-1}})≥f(-4)$,则x的取值范围是(  )
A.$[-\frac{1}{2},1]$B.$[-1,\frac{3}{2}]$C.$(-∞,-1]∪[\frac{3}{2},+∞)$D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合$A=\left\{{y|y={x^2}-\frac{3}{2}x+1,x∈[{-\frac{1}{2},2}]}\right\},B=\left\{{x||{x-m}|≥1}\right\}$,若t∈A是t∈B的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知α满足sinα=$\frac{1}{3}$,那么$cos(\frac{π}{4}+α)cos(\frac{π}{4}-α)$值为(  )
A.$\frac{25}{18}$B.$-\frac{25}{18}$C.$\frac{7}{18}$D.$-\frac{7}{18}$

查看答案和解析>>

同步练习册答案