精英家教网 > 高中数学 > 题目详情
18.已知f(x)是偶函数,且在区间(-∞,0]上递增,若$f({2^{2{x^2}-x-1}})≥f(-4)$,则x的取值范围是(  )
A.$[-\frac{1}{2},1]$B.$[-1,\frac{3}{2}]$C.$(-∞,-1]∪[\frac{3}{2},+∞)$D.[-2,1]

分析 根据题意,由函数的奇偶性与单调性分析可得,$f({2^{2{x^2}-x-1}})≥f(-4)$?$f({2^{2{x^2}-x-1}})≥f(4)$?${2}^{2{x}^{2}-x-1}$≤4,结合指数函数的性质可得2x2-x-1≤2,解可得x的取值范围,即可得答案.

解答 解:根据题意,f(x)是偶函数,则$f({2^{2{x^2}-x-1}})≥f(-4)$?$f({2^{2{x^2}-x-1}})≥f(4)$,
且在区间(-∞,0]上递增,则函数在[0,+∞)上单调递减,则$f({2^{2{x^2}-x-1}})≥f(4)$?${2}^{2{x}^{2}-x-1}$≤4,
而${2}^{2{x}^{2}-x-1}$≤4?${2}^{2{x}^{2}-x-1}$≤22,即2x2-x-1≤2,
解可得-1≤x≤$\frac{3}{2}$,即x的取值范围是[-1,$\frac{3}{2}$],
故选:B.

点评 本题考查函数奇偶性与单调性的综合应用,涉及二次不等式的解法,关键是利用函数的奇偶性与单调性,将原问题转化为关于x的不等式求解问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知在△ABC中,内角A、B、C的对边分别为a,b,c,且b=$\sqrt{2}$a,$\sqrt{3}$cosB=$\sqrt{2}$cosA,c=$\sqrt{3}$+1,则△ABC的面积为$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
组别分组频数频率
第1组[50,60)80.16
第2组[60,70)a
第3组[70,80)200.40
第4组[80,90)0.08
第5组[90,100]2b
合计
(1)写出a,b,x,y的值.
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.
①求所抽取的2名同学中至少有1名同学的成绩在[90,100]内的概率;
②求所抽取的2名同学来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>b,c∈R,则(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.|a|>|b|C.a3>b3D.ac>bc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,两个工厂A,B相距8(单位:百米),O为AB的中点,曲线段MN上任意一点P到A,B的距离之和为10(单位:百米),且MA⊥AB,NB⊥AB.现计划在P处建一公寓,需考虑工厂A,B对它的噪音影响.工厂A对公寓的“噪音度”与距离AP成反比,比例系数为1;工厂B对公寓的“噪音度”与距离BP成反比,比例系数为k.“总噪音度”y是两个工厂对公寓的“噪音度”之和.经测算:当P在曲线段MN的中点时,“总噪音度”y恰好为1.
(Ⅰ)设AP=x(单位:百米),求“总噪音度”y关于x的函数关系式,并求出该函数的定义域;
(Ⅱ)当AP为何值时,“总噪音度”y最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=\frac{{\;{2^x}}}{{\sqrt{1-x}}}+{log_3}(2x-1)$的定义域是(  )
A.$(\frac{1}{2}\;,\;1)$B.$[\frac{1}{2}\;,\;1)$C.(1,+∞)D.$(\frac{1}{2},\;1]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(Ⅰ)求${(-\frac{7}{8})^0}+{(\frac{1}{8})^{-\;\;\frac{1}{3}}}+\root{4}{{{{(3-π)}^4}}}$的值;
(Ⅱ)求${7^{{{log}_7}2}}+lg25+2lg2-ln\sqrt{e^3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$α∈(\frac{5}{4}π\;,\;\frac{3}{2}π)$,且满足$tanα+\frac{1}{tanα}=8$,则sinαcosα=$\frac{1}{8}$;sinα-cosα=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=xsinx,则$f'({\frac{π}{4}})$=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}π}{8}$.

查看答案和解析>>

同步练习册答案