精英家教网 > 高中数学 > 题目详情
8.已知在△ABC中,内角A、B、C的对边分别为a,b,c,且b=$\sqrt{2}$a,$\sqrt{3}$cosB=$\sqrt{2}$cosA,c=$\sqrt{3}$+1,则△ABC的面积为$\frac{\sqrt{3}+1}{2}$.

分析 由已知可求sinB=$\sqrt{2}$sinA,cosB=$\frac{\sqrt{2}}{\sqrt{3}}$cosA,利用同角三角函数基本关系式可求cosA,cosB,进而可求A,B,C的值,由余弦定理c2=a2+b2-2abcosC,可得a,进而利用三角形面积公式即可计算得解.

解答 解:∵由b=$\sqrt{2}$a,可得:sinB=$\sqrt{2}$sinA,
由$\sqrt{3}$cosB=$\sqrt{2}$cosA,可得:cosB=$\frac{\sqrt{2}}{\sqrt{3}}$cosA,
∴($\sqrt{2}$sinA)2+($\frac{\sqrt{2}}{\sqrt{3}}$cosA)2=1,解得:sin2A+$\frac{1}{3}$cos2A=$\frac{1}{2}$,
∴结合sin2A+cos2A=1,可得:cosA=$\frac{\sqrt{3}}{2}$,cosB=$\frac{\sqrt{2}}{2}$,
∴A=$\frac{π}{6}$,B=$\frac{π}{4}$,可得:C=π-A-B=$\frac{7π}{12}$,
∴由余弦定理c2=a2+b2-2abcosC,可得:($\sqrt{3}+1$)2=a2+($\sqrt{2}a$)2-2α×$\sqrt{2}$a×cos$\frac{7π}{12}$,
∴解得:a=$\sqrt{2}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×\sqrt{2}×$($\sqrt{3}+1$)×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{3}+1}{2}$.
故答案为:$\frac{\sqrt{3}+1}{2}$.

点评 本题主要考查了正弦定理,同角三角函数基本关系式,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),点$A(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$在椭圆C上.
(1)求椭圆C的标准方程;
(2)是否存在斜率为2的直线l,使得当直线l与椭圆C有两个不同交点M,N时,能在直线$y=\frac{5}{3}$上找到一点P,在椭圆C上找到一点Q,满足$\overrightarrow{PM}=\overrightarrow{NQ}$?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P(2,1)与Q关于原点O对称,直线PM,QM相交于点M,且它们的斜率之积是-$\frac{1}{4}$
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过P作直线l交轨迹C于另一点A,求DPAO的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}中,a1=2,an+1=an+cn(n=1,2,3,…),且a2=2a1
(1)求常数c的值;
(2)求数列{an}的通项公式;
(3)求数列{$\frac{{a}_{n}-c}{n•{c}^{n}}$}的前n项之和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=3x2+ax+b,且f(x-1)是偶函数,则f(-$\frac{3}{2}$),f(-1),f($\frac{3}{2}$)的大小关系是f(-1)<f(-$\frac{3}{2}$)<f($\frac{3}{2}$)(请用“<”表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中正确的是(  )
A.空间任三点可以确定一个平面
B.垂直于同一条直线的两条直线必互相平行
C.空间不平行的两条直线必相交
D.既不相交也不平行的两条直线是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}为正项等比数列,且满足a1+$\frac{1}{2}$a2=4,a32=$\frac{1}{4}$a2a6;设正项数列{bn}的前n项和为Sn,且满足Sn=$\frac{({{b}_{n}+1)}^{2}}{4}$.
(1)求{an}和{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设p:“方程x2+y2=4-a表示圆”,q:“方程$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{a+1}$=1表示焦点在x轴上的双曲线”,如果p和q都正确,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是偶函数,且在区间(-∞,0]上递增,若$f({2^{2{x^2}-x-1}})≥f(-4)$,则x的取值范围是(  )
A.$[-\frac{1}{2},1]$B.$[-1,\frac{3}{2}]$C.$(-∞,-1]∪[\frac{3}{2},+∞)$D.[-2,1]

查看答案和解析>>

同步练习册答案