精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=e2x-t,g(x)=tex-1,对任意x∈R,f(x)≥g(x)恒成立,则实数t的取值范围为(  )
A.t≤1B.t≤2$\sqrt{2}$-2C.t≤2D.t≤2$\sqrt{3}$-3

分析 设F(x)=f(x)-g(x),则F(x)=f(x)-g(x)=e2x-tex+1-t对任意x∈R,最小值为0,由此能求出实数t的取值范围.

解答 解:设F(x)=f(x)-g(x),
∵函数f(x)=e2x-t,g(x)=tex-1,对任意x∈R,f(x)≥g(x)恒成立,
∴F(x)=f(x)-g(x)=e2x-tex+1-t对任意x∈R,最小值为0,
F′(x)=2e2x-tex,由F′(x)=0,得x=ln$\frac{t}{2}$,
∴F(ln$\frac{t}{2}$)=${e}^{2ln\frac{t}{2}}$-te${\;}^{ln\frac{t}{2}}$+1-t≥0,
整理,得t2+4t-4≤0,
解得-2-2$\sqrt{2}$<t<2$\sqrt{2}$-2.
故选:B.

点评 本题考查实数的取值范围的求法,考查逻辑推理谁能力,运算求解能力,考查化归转化思想.是中档题,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知曲线C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=3sinφ}\end{array}\right.$(φ为参数).
(1)将C的方程化为普通方程;
(2)若点P(x,y)是曲线C上的动点,求2x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l在平面α内,则“l⊥β”是“α⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
组别分组频数频率
第1组[50,60)80.16
第2组[60,70)a
第3组[70,80)200.40
第4组[80,90)0.08
第5组[90,100]2b
合计
(1)写出a,b,x,y的值.
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.
①求所抽取的2名同学中至少有1名同学的成绩在[90,100]内的概率;
②求所抽取的2名同学来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A,B,C所对的边分别为a,b,c,且bcosC+ccosB=$\sqrt{2}$acosC,则角C为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>b,c∈R,则(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.|a|>|b|C.a3>b3D.ac>bc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,两个工厂A,B相距8(单位:百米),O为AB的中点,曲线段MN上任意一点P到A,B的距离之和为10(单位:百米),且MA⊥AB,NB⊥AB.现计划在P处建一公寓,需考虑工厂A,B对它的噪音影响.工厂A对公寓的“噪音度”与距离AP成反比,比例系数为1;工厂B对公寓的“噪音度”与距离BP成反比,比例系数为k.“总噪音度”y是两个工厂对公寓的“噪音度”之和.经测算:当P在曲线段MN的中点时,“总噪音度”y恰好为1.
(Ⅰ)设AP=x(单位:百米),求“总噪音度”y关于x的函数关系式,并求出该函数的定义域;
(Ⅱ)当AP为何值时,“总噪音度”y最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(Ⅰ)求${(-\frac{7}{8})^0}+{(\frac{1}{8})^{-\;\;\frac{1}{3}}}+\root{4}{{{{(3-π)}^4}}}$的值;
(Ⅱ)求${7^{{{log}_7}2}}+lg25+2lg2-ln\sqrt{e^3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设点A,B的坐标分别为(4,0),(-4,0),直线AP,BP相交于点P,且它们的斜率之积为实数m,关于点P的轨迹下列说法正确的是(  )
A.当m<-1时,轨迹为焦点在x轴上的椭圆(除与x轴的两个交点)
B.当-1<m<0时,轨迹为焦点在y轴上的椭圆(除与y轴的两个交点)
C.当m>0时,轨迹为焦点在x轴上的双曲线(除与x轴的两个交点)
D.当0<m<1时,轨迹为焦点在y轴上的双曲线(除与y轴的两个交点)

查看答案和解析>>

同步练习册答案