精英家教网 > 高中数学 > 题目详情
10.在正方体ABCD-A1B1C1D1中,异面直线A1B与CC1所成角的大小为(  )
A.60°B.30°C.90°D.45°

分析 将CC1平移到B1B,从而∠A1BB1为直线BA1与CC1所成角,在三角形A1BB1中求出此角即可.

解答 解:∵CC1∥B1B,
∴∠A1BB1为直线BA1与CC1所成角,
因为是在正方体ABCD-A1B1C1D1中,
所以∠A1BB1=45°.
故选:D.

点评 本题主要考查了异面直线及其所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设常数θ∈(0,$\frac{π}{2}$),函数f(x)=2cos2(θ-$\frac{3}{2}$x)-1,且对任意实数x,f(x)=f($\frac{π}{3}$-x)恒成立.
(1)求θ值;
(2)试把f(x)表示成关于sinx的关系式;
(3)若x∈(0,π)时,不等式f(x)>2a•f($\frac{2x}{3}$)-13f($\frac{x}{3}$)恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若y=f(x)是幂函数,且满足f(4)=2f(2),则f(3)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,已知a:b:c=3:2:4,那么cosC=(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.-$\frac{2}{3}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知$\sqrt{3}$acosB=bsinA.
(1)求角B的大小;
(2)若△ABC的面积S=$\frac{\sqrt{3}}{4}$b2,求$\frac{a}{c}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在直线l1:ax-y-a+2=0(a∈R),过原点O的直线l2与l1垂直,垂足为M,则|OM|的最大值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题是真命题的为(  )
A.?x∈R,2x>1B.?x∈R,x2>0C.?x∈R,2x<1D.?x∈R,x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若关于x的一元二次方程x2+ax-2=0有两个不相等的实根x1,x2,且x1<-1,x2>1,则实数a的取值范围是(  )
A.a<-1B.a>1C.-1<a<1D.a>2$\sqrt{2}$或a<-2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B-cos2C-sin2A=sinAsinB.
(1)求角C;
(2)向量$\overrightarrow{m}$=(sinA,cosB),$\overrightarrow{n}$=(cosx,sinx),若函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的图象关于直线x=$\frac{π}{3}$对称,求角A,B.

查看答案和解析>>

同步练习册答案