分析 分a=0或a≠0两种情况讨论,设y=$\frac{{a}^{2}-4a+4}{{a}^{2}+1}$,根据判别式求出y的范围,即可得到|OM|的最大值
解答 解:直线l1:ax-y-a+2=0(a∈R),化为y=ax-a+2,则直线l1的斜率为a,
当a=0时,11:y=2,
∵过原点O的直线l2与l1垂直,
∴直线l2的方程为x=0,
∴M(0.2),
∴|OM|=2,
当a≠0时,
则直线l2的斜率为-$\frac{1}{a}$,
则直线l2的方程为y=-$\frac{1}{a}$x,
由$\left\{\begin{array}{l}{y=ax-a+2}\\{y=-\frac{1}{a}x}\end{array}\right.$,解得x=$\frac{a(a-2)}{{a}^{2}+1}$,y=$\frac{2-a}{{a}^{2}+1}$,
∴M($\frac{a(a-2)}{{a}^{2}+1}$,$\frac{2-a}{{a}^{2}+1}$),
则|OM|=$\sqrt{\frac{(a-2)^{2}}{{a}^{2}+1}}$=$\sqrt{\frac{{a}^{2}-4a+4}{{a}^{2}+1}}$,
设y=$\frac{{a}^{2}-4a+4}{{a}^{2}+1}$,则(1-y)a2-4a+4-y=0,
∴△=16-4(1-y)(4-y)≥0,
解得0≤y≤5,
∴|OM|的最大值为$\sqrt{5}$,
综上所述:|OM|的最大值为$\sqrt{5}$,
故答案为:$\sqrt{5}$
点评 本题考查了直线方程的垂直的关系和直线与直线的交点和函数的最值得问题,属于中档题
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{4}$ | B. | -$\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0)∪($\frac{4}{3}$,+∞) | B. | (0,$\frac{4}{3}$] | C. | [0,$\frac{4}{3}$] | D. | (-∞,0]∪[$\frac{4}{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ①③ | C. | ①④ | D. | ③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com