精英家教网 > 高中数学 > 题目详情
7.从分别写有1,2,3,4,5的五张卡片中依次抽取两张,假设每张卡片被取到的概率相等,且每张卡片上只有一个数字,则取到的两张卡片上的数字之和为偶数的概率为$\frac{2}{5}$.

分析 先基本事件总数n=${C}_{5}^{2}$=10,再求出取到的两张卡片上的数字之和为偶数包含的基本事件个数:m=${C}_{3}^{2}+{C}_{2}^{2}$=4,由此能求出取到的两张卡片上的数字之和为偶数的概率.

解答 解:从分别写有1,2,3,4,5的五张卡片中依次抽取两张,
假设每张卡片被取到的概率相等,且每张卡片上只有一个数字,
基本事件总数n=${C}_{5}^{2}$=10,
取到的两张卡片上的数字之和为偶数包含的基本事件个数:
m=${C}_{3}^{2}+{C}_{2}^{2}$=4,
∴取到的两张卡片上的数字之和为偶数的概率为p=$\frac{4}{10}$=$\frac{2}{5}$.
故答案为:$\frac{2}{5}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、…、《辑古算经》等算经十书,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部名著中选择2部作为“数学文化”校本课程学习内容,则所选2部名著中至少有一部是魏晋南北朝时期的名著的概率为$\frac{14}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,已知a:b:c=3:2:4,那么cosC=(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.-$\frac{2}{3}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在直线l1:ax-y-a+2=0(a∈R),过原点O的直线l2与l1垂直,垂足为M,则|OM|的最大值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题是真命题的为(  )
A.?x∈R,2x>1B.?x∈R,x2>0C.?x∈R,2x<1D.?x∈R,x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.两直线3x+y-3=0与3x+my+$\frac{1}{2}$=0平行,则它们之间的距离是(  )
A.4B.$\frac{2}{13}$$\sqrt{13}$C.$\frac{5}{26}$$\sqrt{13}$D.$\frac{7}{20}$$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若关于x的一元二次方程x2+ax-2=0有两个不相等的实根x1,x2,且x1<-1,x2>1,则实数a的取值范围是(  )
A.a<-1B.a>1C.-1<a<1D.a>2$\sqrt{2}$或a<-2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设$f(x)=\left\{\begin{array}{l}3{e^{x-1}},x<2\\{log_7}(8x+1),x≥2\end{array}\right.$,则f[f(ln2+1)]=(  )
A.2B.7C.log713D.log717

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在平面直角坐标系xOy中,角α(0≤α≤π)的始边为x轴的非负半轴,终边与单位圆的交点为A,将OA绕坐标原点逆时针旋转$\frac{π}{2}$至OB,过点B作x轴的垂线,垂足为Q.记线段BQ的长为y,则函数y=f(α)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案