精英家教网 > 高中数学 > 题目详情
12.两直线3x+y-3=0与3x+my+$\frac{1}{2}$=0平行,则它们之间的距离是(  )
A.4B.$\frac{2}{13}$$\sqrt{13}$C.$\frac{5}{26}$$\sqrt{13}$D.$\frac{7}{20}$$\sqrt{10}$

分析 根据两条直线平行的条件,解出m=1,利用两条平行直线间的距离公式加以计算,可得答案.

解答 解:∵直线3x+y-3=0与3x+my+$\frac{1}{2}$=0平行,
∴m=1.
因此,直线3x+y-3=0与3x+y+$\frac{1}{2}$=0之间的距离为d=$\frac{|-3-\frac{1}{2}|}{\sqrt{9+1}}$=$\frac{7\sqrt{10}}{20}$,
故选:D.

点评 本题已知两条直线互相平行,求参数m的值并求两条直线的距离.着重考查了直线的位置关系、平行线之间的距离公式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.与椭圆$C:\frac{x^2}{9}+\frac{y^2}{5}=1$共焦点且过点$P(3,\sqrt{2})$的双曲线方程为(  )
A.${x^2}-\frac{y^2}{3}=1$B.$\frac{x^2}{3}-{y^2}=1$C.$\frac{x^2}{2}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,已知sinA:sinB:sinC=3:2:4,那么cosC=(  )
A.-$\frac{1}{4}$B.-$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命题“?t∈R,A∩B=∅”是真命题,则实数a的取值范围是(  )
A.(-∞,0)∪($\frac{4}{3}$,+∞)B.(0,$\frac{4}{3}$]C.[0,$\frac{4}{3}$]D.(-∞,0]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.从分别写有1,2,3,4,5的五张卡片中依次抽取两张,假设每张卡片被取到的概率相等,且每张卡片上只有一个数字,则取到的两张卡片上的数字之和为偶数的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知{an}是等差数列,a1=-26,a8+a13=5,当{an}的前n项和Sn取最小值时,n等于(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.关于x的不等式x2-ax+b<0的解集为{x|2<x<3}.
(Ⅰ)求a+b;
(Ⅱ)若不等式-x2+bx+c>0的解集为空集,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$f(x)={log_{0.5}}({x^2}-mx-m)$.
(1)若函数f(x)的定义域为R,求实数m的取值范围;
(2)若函数f(x)在区间$(-2,-\frac{1}{2})$上是递增的,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(3,x).
(1)如果$\overrightarrow{a}$∥$\overrightarrow{b}$,求实数x的值;
(2)如果x=-1,求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

同步练习册答案