精英家教网 > 高中数学 > 题目详情
(2012•江苏二模)在平面直角坐标系xOy中,已知点P在曲线xy=1(x>0)上,点P在x轴上的射影为M.若点P在直线x-y=0的下方,当
OP2
OM-MP
取得最小值时,点P的坐标为
6
-
2
2
6
+
2
2
6
-
2
2
6
+
2
2
分析:设点P(t,
1
t
),将
OP2
OM-MP
化成关于t的表达式,结合题意得t-
1
t
是正数,利用基本不等式可求出
OP2
OM-MP
的最小值为2
2
,根据等号成立的条件求出t的值,从而得到此时点P的坐标.
解答:解:设点P(t,
1
t
),得OP2=t2+
1
t2
,而OM=t,MP=
1
t

OP2
OM-MP
=
t2+
1
t2
t-
1
t
=
(t -
1
t 
)2+2
t-
1
t
=(t-
1
t
)+
2
t-
1
t

∵点P在直线x-y=0的下方,且t>0
∴t>1,得t-
1
t
是正数,所以(t-
1
t
)+
2
t-
1
t
≥2
2

当且仅当t-
1
t
=
2
t-
1
t
=
2
时,不等式的等号成立,解之得t=
6
-
2
2
1
t
=
6
+
2
2

∴点P的坐标为(
6
-
2
2
6
+
2
2

故答案为:(
6
-
2
2
6
+
2
2
点评:本题通过曲线上一个动点,求关于线段OP、OM、MP的分式的最小值,着重考查了曲线与方程、利用基本不等式求最值和简单的演绎推理等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏二模)设m,n是两条不同的直线,α,β是两个不同的平面,给出下列命题:
(1)若α∥β,m?β,n?α,则m∥n;
(2)若α∥β,m⊥β,n∥α,则m⊥n;
(3)若α⊥β,m⊥α,n∥β,则m∥n;
(4)若α⊥β,m⊥α,n⊥β,则m⊥n.
上面命题中,所有真命题的序号为
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,已知A、B是函数y=3sin(2x+θ)的图象与x轴两相邻交点,C是图象上A,B之间的最低点,则
AB
AC
=
π2
8
π2
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,在C城周边已有两条公路l1,l2在点O处交汇,现规划在公路l1,l2上分别选择A,B两处为交汇点(异于点O)直接修建一条公路通过C城,已知OC=(
2
+
6
)km
,∠AOB=75°,∠AOC=45°,设OA=xkm,OB=ykm.
(1)求y关于x的函数关系式并指出它的定义域;
(2)试确定点A、B的位置,使△OAB的面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)设实数n≤6,若不等式2xm+(2-x)n-8≥0对任意x∈[-4,2]都成立,则
m4-n4
m3n
的最小值为
-
80
3
-
80
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)已知双曲线
x2
m
-
y2
3
=1(m>0)
的一条渐近线方程为y=
3
2
x
,则m的值为
4
4

查看答案和解析>>

同步练习册答案