£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎѡһÌâ×÷´ð£¬Èç¹û¶à×ö£®Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļƷ֣©
A£®£¨Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì£© ÒÑÖªÔ²CµÄÔ²ÐÄΪ£¨6£¬£©£¬°ë¾¶Îª5£¬Ö±Ïß±»Ô²½ØµÃµÄÏÒ³¤Îª8£¬Ôòa=    £®
B£®£¨Ñ¡ÐÞ4-5 ²»µÈʽѡ½²£©Èç¹û¹ØÓÚxµÄ²»µÈʽ|x-3|-|x-4|£¼aµÄ½â¼¯²»Êǿռ¯£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ    £»
C£®£¨Ñ¡ÐÞ4-1 ¼¸ºÎÖ¤Ã÷Ñ¡½²£©£¬ABΪԲOµÄÖ±¾¶£¬ÏÒAC£®BD½»ÓÚµãP£¬ÈôAB=3£¬CD=1£¬Ôòsin¡ÏAPD=    £®
¡¾´ð°¸¡¿·ÖÎö£ºA  °Ñ·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬ÓÉÏÒ³¤¹«Ê½ÇóµÃÔ²Ðĵ½Ö±ÏߵľàÀëd£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽÇóµÃtana£¬´Ó¶øÇóµÃa£®
B ÓÉÓÚ|x-3|-|x-4|µÄ×îСֵµÈÓÚ-1£¬²»µÈʽ|x-3|-|x-4|£¼aµÄ½â¼¯²»Êǿռ¯£¬Ôò-1£¼a£®
C ÓÉ¡÷PAB¡×¡÷PDC£¬¿ÉµÃ  £¬ÓÉPD¡ÍAD ¿ÉµÃ£¬cos¡ÏAPD=£¬ÀûÓÃͬ½ÇÈý½Çº¯ÊýµÄ»ù±¾¹ØÏµÇóµÃsin¡ÏAPDµÄÖµ£®
½â´ð£º½â£ºA  ÓÉÌâÒâµÃ Ô²CµÄÔ²ÐÄΪ£¨0£¬6£©£¬Ô²CµÄ·½³ÌΪ x2+£¨y-6£©2=25£¬
Ö±Ïß ¼´  y=tana•x£¬tana•x-y=0£®
ÉèÔ²Ðĵ½Ö±ÏߵľàÀëµÈÓÚd£¬ÓÉÏÒ³¤¹«Ê½µÃ 8=2=2£¬¡àd=3£¬
ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽµÃ d=3=£¬¡àtana=±£®
¸ù¾Ý¦È·¶Î§Öª£¬tana£¼0£¬¡àtana=-£¬a=£¬¹Ê´ð°¸Îª £®
B  ÓÉÓÚ|x-3|-|x-4|±íʾÊýÖáÉϵÄxµ½3µÄ¾àÀë¼õÈ¥Ëüµ½4µÄ¾àÀ룬×îСֵµÈÓÚ-1£¬
Èç¹û¹ØÓÚxµÄ²»µÈʽ|x-3|-|x-4|£¼aµÄ½â¼¯²»Êǿռ¯£¬Ôò-1£¼a£¬¼´ a£¾-1£¬¹Ê´ð°¸Îª-1£®
C  ÈçͼËùʾ£ºÓÉÌâÒâµÃ¡ÏAPB=¡ÏDPC£¬¡ÏPDC=¡ÏPAB£¬¡ÏPCD=¡ÏPBA£¬
¡à¡÷PAB¡×¡÷PDC£¬¡à£¬£®¡ßPD¡ÍAD£¨Ö±¾¶¶ÔµÄÔ²ÖܽǵÈÓÚ90°£©£¬
¡àcos¡ÏAPD=£¬¡àsin¡ÏAPD=£¬¹Ê´ð°¸Îª  £®

µãÆÀ£º±¾Ì⿼²é¾ø¶ÔÖµ²»µÈʽµÄÐÔÖÊ£¬µãµ½Ö±ÏߵľàÀ빫ʽ¡¢ÏÒ³¤¹«Ê½µÄÓ¦Óã¬ÌåÏÖÁËÊýÐνáºÏµÄÊýѧ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎѡһÌâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
A£®£¨²»µÈʽѡ×öÌ⣩²»µÈʽ|x+1|¡Ý|x+2|µÄ½â¼¯Îª
 
£®
B£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩ÈçͼËùʾ£¬¹ý¡ÑOÍâÒ»µãP×÷Ò»ÌõÖ±ÏßÓë¡ÑO½»ÓÚA£¬BÁ½µã£¬
ÒÑÖªPA=2£¬µãPµ½¡ÑOµÄÇÐÏß³¤PT=4£¬ÔòÏÒABµÄ³¤Îª
 
£®
C£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÈôÖ±Ïß3x+4y+m=0ÓëÔ²
x=1+cos¦È
y=-2+sin¦È
£¨¦ÈΪ²ÎÊý£©Ã»Óй«¹²µã£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Èýѡһ£¬¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎѡһÌâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
£¨1£©£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚÖ±½Ç×ø±êϵÖÐÔ²CµÄ²ÎÊý·½³ÌΪ
x=1+2cos¦È
y=
3
+2sin¦È
£¨¦ÈΪ²ÎÊý£©£¬ÔòÔ²CµÄÆÕͨ·½³ÌΪ
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4
£®
£¨2£©£¨²»µÈʽѡ½²Ñ¡×öÌ⣩É躯Êýf£¨x£©=|2x+1|-|x-4|£¬Ôò²»µÈʽf£¨x£©£¾2µÄ½â¼¯Îª
{x|x£¼-7»òx£¾
5
3
}
{x|x£¼-7»òx£¾
5
3
}
£®
£¨3£©£¨¼¸ºÎÖ¤Ã÷Ñ¡½²Ñ¡×öÌ⣩ ÈçͼËùʾ£¬µÈÑüÈý½ÇÐÎABCµÄµ×±ßAC³¤Îª6£¬ÆäÍâ½ÓÔ²µÄ°ë¾¶³¤Îª5£¬ÔòÈý½ÇÐÎABCµÄÃæ»ýÊÇ
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎѡһÌâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨A£©£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬CDÊÇÔ²OµÄÇÐÏߣ¬ÇеãΪC£¬µãBÔÚÔ²OÉÏ£¬BC=2£¬¡ÏBCD=30¡ã£¬ÔòÔ²OµÄÃæ»ýΪ
4¦Ð
4¦Ð
£»
£¨B£©£¨¼«×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩¼«×ø±ê·½³Ì¦Ñ=2sin¦È+4cos¦È±íʾµÄÇúÏ߽ئÈ=
¦Ð
4
(¦Ñ¡ÊR)
ËùµÃµÄÏÒ³¤Îª
3
2
3
2
£»
£¨C£©£¨²»µÈʽѡ×öÌ⣩  ²»µÈʽ|2x-1|£¼|x|+1½â¼¯ÊÇ
£¨0£¬2£©
£¨0£¬2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎѡһÌâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A£®Èçͼ£¬¡÷ABCÊÇ¡ÑOµÄÄÚ½ÓÈý½ÇÐΣ¬PAÊÇ¡ÑOµÄÇÐÏߣ¬PB½»ACÓÚµãE£¬½»¡ÑOÓÚµãD£®ÈôPA=PE£¬¡ÏABC=60¡ã£¬PD=1£¬PB=9£¬ÔòEC=
4
4
£®
B£® PΪÇúÏßC1£º
x=1+cos¦È
y=sin¦È
£¬£¨¦ÈΪ²ÎÊý£©ÉÏÒ»µã£¬ÔòËüµ½Ö±ÏßC2£º
x=1+2t
y=2
£¨tΪ²ÎÊý£©¾àÀëµÄ×îСֵΪ
1
1
£®
C£®²»µÈʽ|x2-3x-4|£¾x+1µÄ½â¼¯Îª
{x|x£¾5»òx£¼-1»ò-1£¼x£¼3}
{x|x£¾5»òx£¼-1»ò-1£¼x£¼3}
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁжþÌâÖÐÈÎѡһÌâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣®£©
£¨A£©£¨Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì£©ÇúÏß
x=cos¦Á
y=a+sin¦Á
£¨¦ÁΪ²ÎÊý£©ÓëÇúÏߦÑ2-2¦Ñcos¦È=0µÄ½»µã¸öÊýΪ
 
¸ö£®
£¨B£©£¨Ñ¡ÐÞ4-5²»µÈʽѡ½²£©Èô²»µÈʽ|x+1|+|x-3| ¡Ýa+
4
a
¶ÔÈÎÒâµÄʵÊýxºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸