精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=x2+3x+3-a•ex(a为非零实数),若f(x)有且仅有一个零点,则a的取值范围为(0,e)∪(3,+∞).

分析 令f(x)=0得a=$\frac{{x}^{2}+3x+3}{{e}^{x}}$,设g(x)=$\frac{{x}^{2}+3x+3}{{e}^{x}}$,求出g(x)的单调区间和极值,令a=g(x)只有一解得出a的范围.

解答 解:令f(x)=0得x2+3x+3=aex,∴a=$\frac{{x}^{2}+3x+3}{{e}^{x}}$,
令g(x)=$\frac{{x}^{2}+3x+3}{{e}^{x}}$,则g′(x)=$\frac{-{x}^{2}-x}{{e}^{x}}$,
令g′(x)=0得x=-1或x=0.
∴当x<-1或x>0时,g′(x)<0,当-1<x<0时,g′(x)>0.
∴g(x)在(-∞,-1)上单调递减,在(-1,0)上单调递增,在(0,+∞)上单调递减.
∴当x=-1时,g(x)取得极小值g(-1)=e,当x=0时,g(x)取得极大值g(0)=3,
∵f(x)只有一个零点,∴a=g(x)只有一解.
∵$\underset{lim}{x→-∞}$g(x)=+∞,$\underset{lim}{x→+∞}$g(x)=0,
∴0<a<e或a>3.
故答案为(0,e)∪(3,+∞).

点评 本题考查了函数单调性,极值与零点个数的关系,函数单调性的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.非零复数z1,z2满足|z1+z2|=|z1-z2|,u=($\frac{{z}_{1}}{{z}_{2}}$)2,则u(  )
A.u<0B.u>0C.u=0D.以上都可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(Ⅰ)求$\frac{1+cos20°}{2sin20°}$-2sin10°•tan80°的值.
(Ⅱ)已知cosα=$\frac{1}{7}$,cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$.求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点为F1,F2,M为短轴端点,且S△MF1F2=4,离心率为$\frac{{\sqrt{2}}}{2}$,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条射线,与椭圆C分别交于A,B两点,且满足$|{\overrightarrow{OA}+\overrightarrow{OB}}|=|{\overrightarrow{OA}-\overrightarrow{OB}}|$,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“0<a<8”是“不等式2ax2+ax+1>0恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=(x-2)(x-3)(x-4)在x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数$f(x)=sinωx+acosωx(ω>0)的图象关于点M({\frac{π}{3},0})对称$,且在$x=\frac{π}{6}$处函数有最小值,则a+ω在[0,10]上的一个可能值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若平面α的一个法向量为$\overrightarrow{n}$=(4,1,1),直线l的一个方向向量为$\overrightarrow{a}$=(-2,-3,3),则l与α所成角的正弦值为$\frac{4\sqrt{11}}{33}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,若f(x)=3x2-1,取g=$\frac{1}{5}$则输出的值为(  )
A.$\frac{19}{32}$B.$\frac{9}{16}$C.$\frac{5}{8}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案