(本题满分13分)
已知f(x)=ln(1+x2)+ax(a≤0)。
(1)讨论f(x)的单调性。
(2)证明:(1+
)(1+
)…(1+
)<e (n∈N*,n≥2,其中无理数e=2.71828…)
解:(理)(1)f′(x)=
+a=
………………………………1分
(i)若a=0时,f′(x)=
>0
x>0,f′(x)<0
x<0
∴f(x)在(0,+∞)单调递增,在(-∞,0)单调递减。 …………………………3分
(ii)若
时,f′(x)≤0对x∈R恒成立。
∴f(x)在R上单调递减。 ……………………………6分
(iii)若-1<a<0,由f′(x)>0![]()
>0![]()
<x<![]()
由f′(x)<0可得x>
或x<![]()
∴f(x)在[
,
]单调递增
在(-∞,
],[![]()
上单调递减。
综上所述:若a≤-1时,f(x)在(-∞,+∞)上单调递减。………………………………7分
(2)由(1)当a=-1时,f(x)在(-∞,+∞)上单调递减。
当x∈(0,+∞)时f(x)<f(0)
∴ln(1+x2)-x<0 即ln(1+x2)<x
∴ln[(1+
)(1+
)……(1+
)]
=ln[(1+
)(1+
)+…ln(1+
)<
+
+…+![]()
<
=1-
+
-
+…+
=1-
<1
∴(1+
)(1+
)……(1+
)<e …………………………………………13分
科目:高中数学 来源:2012届浙江省宁波万里国际学校高三上期中理科数学试卷(解析版) 题型:解答题
(本题满分13分)
的三个内角
依次成等差数列.
(Ⅰ)若
,试判断
的形状;
(Ⅱ)若
为钝角三角形,且
,求![]()
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年北京市朝阳区高三上学期期末考试理科数学 题型:解答题
(本题满分13分)
在锐角
中,
,
,
分别为内角
,
,
所对的边,且满足
.
(Ⅰ)求角
的大小;
(Ⅱ)若
,且
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省龙岩市高三上学期期末考试数学理卷(一级学校) 题型:解答题
(本题满分13分)
如图,在五面体ABCDEF中,FA
平面ABCD,AD//BC//FE,AB
AD,AF=AB=BC=FE=
AD.
(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为
?若存在,试确定点M的位置;若不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com