精英家教网 > 高中数学 > 题目详情
某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于19秒.右图是按上述分组方法得到的频率分布直方图.由图可知,人数最多的一组是第
第三
第三
组,该组人数为
18
18
分析:由频率分布直方图最高的矩形即人数最多的一组;利用直方图中,频率=纵坐标×组距求出频率;再利用频数=频率×样本容量求出该组人数.
解答:解:由频率分布直方图知,人数最多的一组是第三组
该组的频率=0.36×1=0.36
该组人数为50×0.36=18
故答案为三;18
点评:解决与频率分布直方图有关的问题,一定要注意直方图中的纵坐标为频率比组距,直方图中求频率应该等于纵坐标乘以组距.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.
(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m-n|>10”概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网某班50名学生在一次百米测试中,成绩全部在[13,18]内,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15);…第五组[17,18].右图是按上述分组方法得到的频率分布直方图.且第一组,第二组,第四组的频数成等比数列,m,n表示该班某两位同学的百米测试成绩,且m,n∈[13,14)∪[17,18].则事件“|m-n|>1”的概率为(  )
A、
2
7
B、
4
7
C、
3
7
D、
5
7

查看答案和解析>>

科目:高中数学 来源: 题型:

某班50名学生在一次百米测试中,成绩介于13秒与18秒之间.将测试结果分成五组,按上述分组方法得到如下频率分布直方图
(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数.
(2)m,n表示该班两位同学百米测试成绩且m,n∈[13,14)∪[17,18],求|m-n|>1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是高二某班50名学生在一次一百米测试成绩的频率分布直方图,则成绩在[14,16)(单位为s)内的人数为
27
27

查看答案和解析>>

科目:高中数学 来源: 题型:

某班 50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为(  )

查看答案和解析>>

同步练习册答案