精英家教网 > 高中数学 > 题目详情
12.已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn=qSn-1+1,其中q>0,n>1,n∈N*
(1)若2a2,a3,a2+2 成等差数列,求{an}的通项公式;
(2)设双曲线x2-$\frac{{y}^{2}}{{a}_{n}^{2}}$=1 的离心率为en,且e2=3,求e${\;}_{1}^{2}$+e${\;}_{2}^{2}$+…+e${\;}_{n}^{2}$.

分析 (1)由条件利用等比数列的定义和性质,求得数列{an}为首项等于1、公比为q的等比数列,再根据2a2,a3,a2+2成等差数列求得公比q的值,可得{an}的通项公式.
(2)由(1)可得an=qn-1;又由双曲线x2-$\frac{{y}^{2}}{{a}_{n}^{2}}$=1 的离心率为en,且e2=3,分析可得e2=q=2$\sqrt{2}$,进而可得数列{an}的通项公式,再次由双曲线的几何性质可得en2=1+an2=1+8n-1,运用分组求和法计算可得答案.

解答 解:(Ⅰ):∵Sn+1=qSn+1 ①,
∴当n≥2时,Sn=qSn-1+1 ②,两式相减可得an+1=q•an
即从第二项开始,数列{an}为等比数列,公比为q.
当n=1时,
∵数列{an}的首项为1,
∴a1+a2=S2=q•a1+1,
∴a2 =a1•q,
∴数列{an}为等比数列,公比为q.
∵2a2,a3,a2+2成等差数列,
∴2a3 =2a2+a2+2,
∴2q2=2q+q+2,求得q=2,
则数列{an}是以1为首项,公比为2的等比数列,
则an=1×2n-1=2n-1
(Ⅱ)由(1)可得数列{an}是以1为首项,公比为q的等比数列,
则an=1×qn-1=qn-1
若e2=3,则e2=$\sqrt{1+{a}_{2}^{2}}$=3,
解可得a2=2$\sqrt{2}$,
则a2=q=2$\sqrt{2}$,即q=2$\sqrt{2}$,
an=1×qn-1=qn-1=(2$\sqrt{2}$)n-1
则en2=1+an2=1+8n-1
故e12+e22+…+en2=n+(1+8+82+…+8n-1)=n+$\frac{{8}^{n}-1}{7}$

点评 本题考查数列的递推公式以及数列的求和,涉及双曲线的简单几何性质,注意题目中q>0这一条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.“在(a,b)内f′(x)>0”是“f(x)在(a,b)内单调递增”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a、b、c∈R,试讨论函数f(x)=ax2+bx+c的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的函数f(x)满足f(x)=f(4-x),且当x≥2时,f(x)=4x+2x-6,则f(x)在区间[0,4]上的最大值与最小值分别为(  )
A.266,14B.256,14C.256,-$\frac{21}{4}$D.266,-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.对于顶点在原点的抛物线,给出下列条件:
①焦点在x轴上;
②焦点在y轴上;
③抛物线的通径的长为5;
④抛物线上横坐标为2的点到焦点的距离等于6;
⑤抛物线的准线方程为x=-$\frac{5}{2}$;
⑥由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).
能使抛物线方程为y2=10x的条件是①⑤⑥.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(  )
A.($\frac{1}{4}$,-1)B.($\frac{1}{4}$,1)C.($\frac{1}{2}$,-1)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l1:x+my+6=0.l2:(m-2)x+3y+2m=0,求实数m的值使得:
(1)l1,l2相交;(2)l1⊥l2;(3)l1∥l2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x-$\frac{1}{x}$.
(1)利用定义证明:函数f(x)在区间(0,+∞)上为增函数;
(2)当x∈(0,1)时,t•f(2x)≥2x-1恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:x2+(y+1)2=5,直线l:mx-y+1=0(m∈R)
(1)判断直线l与圆C的位置关系;
(2)设直线l与圆C交于A、B两点,若直线l的倾斜角为120°,求弦AB的长.

查看答案和解析>>

同步练习册答案