【题目】已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则 (xi+yi)=( )
A. 0 B. m
C. 2m D. 4m
科目:高中数学 来源: 题型:
【题目】已知f(x)=x2+(a+1)x+a2(a∈R),若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和.
(1)求g(x)和h(x)的解析式;
(2)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求f(1)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点,的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,此光线从点发出,经两次反射后又回到了点,历时秒;若,则与的离心率之比为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公交车的数量太多容易造成资源浪费,太少又难以满足乘客的需求,为了合理布置车辆,公交公司在2路车的乘客中随机调查了50名乘客,经整理,他们候车时间(单位:)的茎叶图如下:
(Ⅰ)将候车时间分为八组,作出相应的频率分布直方图;
(Ⅱ)若公交公司将2路车发车时间调整为每隔15发一趟车,那么上述样本点将发生变化(例如候车时间为9的不变,候车时间为17的变为2),现从2路车的乘客中任取5人,设其中候车时间不超过10的乘客人数为,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a-.
(1)求f(0);
(2)探究f(x)的单调性,并证明你的结论;
(3)若f(x)为奇函数,求满足f(ax)<f(2)的x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,且离心率为.过抛物线上一点作的切线交椭圆于,两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线,使得,若存在,求出的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M(x1,y1)是椭圆=1(a>b>0)上任意一点,F为椭圆的右焦点.
(1)若椭圆的离心率为e,试用e,a,x1表示|MF|,并求|MF|的最值;
(2)已知直线m与圆x2+y2=b2相切,并与椭圆交于A、B两点,且直线m与圆的切点Q在y轴右侧,若a=4,求△ABF的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com