【题目】已知函数
,其中
为常数.
(1)若
,求曲线
在点
处的切线方程;
(2)若
,求证:
有且仅有两个零点;
(3)若
为整数,且当
时,
恒成立,求
的最大值.
【答案】(1)x-y=0;(2)详见解析;(3)4;
【解析】
试题分析:(1)求出f (1),即切线的斜率,可由点斜式得直线方程;(2)用导数研究函数的单调性,再由零点存在性定理说明零点的个数;(3)不等式恒成立问题一般可以先参数分离,再求函数的最值,这样可以避免讨论求最值,本题在求最值时需要二次求导和估值来确定函数的最值;
试题解析:(1)当k=0时,f(x)=1+lnx.
因为f (x)=
,从而f (1)=1.
又f (1)=1,
所以曲线y=f(x)在点 (1,f(1))处的切线方程y-1=x-1,
即x-y=0.
(2)当k=5时,f(x)=lnx+
-4.
因为f (x)=
,从而
当x∈(0,10),f ′(x)<0,f(x)单调递减;当x∈(10,+∞)时,f ′(x)>0,f(x)单调递增.
所以当x=10时,f(x)有极小值.
因f(10)=ln10-3<0,f(1)=6>0,所以f(x)在(1,10)之间有一个零点.
因为f(e4)=4+
-4>0,所以f(x)在(10,e4)之间有一个零点.
从而f(x)有两个不同的零点.
(3)方法一:由题意知,1+lnx-
>0对x∈(2,+∞)恒成立,
即k<
对x∈(2,+∞)恒成立.
令h(x)=
,则h(x)=
.
设v(x)=x-2lnx-4,则v(x)=
.
当x∈(2,+∞)时,v(x)>0,所以v(x)在(2,+∞)为增函数.
因为v(8)=8-2ln8-4=4-2ln8<0,v(9)=5-2ln9>0,
所以存在x0∈(8,9),v(x0)=0,即x0-2lnx0-4=0.
当x∈(2,x0)时,h(x)<0,h(x)单调递减,当x∈(x0,+∞)时,h(x)>,h(x)单调递增.
所以当x=x0时,h(x)的最小值h(x0)=
.
因为lnx0=
,所以h(x0)=
∈(4,4.5).
故所求的整数k的最大值为4.
方法二:由题意知,1+lnx-
>0对x∈(2,+∞)恒成立.
f(x)=1+lnx-
,f (x)=
.
①当2k≤2,即k≤1时,f(x)>0对x∈(2,+∞)恒成立,
所以f(x)在(2,+∞)上单调递增.
而f(2)=1+ln2>0成立,所以满足要求.
②当2k>2,即k>1时,
当x∈(2,2k)时,f ′(x)<0, f(x)单调递减,当x∈(2k,+∞),f ′(x)>0,f(x)单调递增.
所以当x=2k时,f(x)有最小值f(2k)=2+ln2k-k.
从而f(x)>0在x∈(2,+∞)恒成立,等价于2+ln2k-k>0.
令g(k)=2+ln2k-k,则g(k)=
<0,从而g(k) 在(1,+∞)为减函数.
因为g(4)=ln8-2>0,g(5)=ln10-3<0 ,
所以使2+ln2k-k<0成立的最大正整数k=4.
综合①②,知所求的整数k的最大值为4.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=
与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则
(xi+yi)=( )
A. 0 B. m
C. 2m D. 4m
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max
,H2(x)=min
(max
表示p,q中的较大值,min
表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=( )
A.16B.-16
C.a2-2a-16D.a2+2a-16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,圆
。
(1)若点
在圆
内,求
的取值范围;
(2)若过点
的圆
的切线只有一条,求切线的方程;
(3)当
时,过点
的直线
被圆
截得的弦长为
,求直线
的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
分别是双曲线
的左、右焦点,过点
作垂直与
轴的直线交双曲线于
,
两点,若
为锐角三角形,则双曲线的离心率的取值范围是_______.
【答案】![]()
【解析】
根据双曲线的通径求得
点的坐标,将三角形
为锐角三角形,转化为
,即
,将表达式转化为含有离心率的不等式,解不等式求得离心率的取值范围.
根据双曲线的通径可知
,由于三角形
为锐角三角形,结合双曲线的对称性可知
,故
,即
,即
,解得
,故离心率的取值范围是
.
【点睛】
本小题主要考查双曲线的离心率的取值范围的求法,考查双曲线的通径,考查双曲线的对称性,考查化归与转化的数学思想方法,属于中档题.本小题的主要突破口在将三角形
为锐角三角形,转化为
,利用
列不等式,再将不等式转化为只含离心率的表达式,解不等式求得双曲线离心率的取值范围.
【题型】填空题
【结束】
17
【题目】已知命题
:方程
有两个不相等的实数根;命题
:不等式
的解集为
.若
或
为真,
为假,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为
、
、
三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).
![]()
![]()
(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;
(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系
中,直线
的参数方程为
(
为参数),在以直角坐标系的原点
为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(Ⅰ)求曲线
的直角坐标方程和直线
的普通方程;
(Ⅱ)若直线
与曲线
相交于
,
两点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要条件;
(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com