(本小题满分12分)如图1,已知四边形ABCD是上、下底边长分别为2和6,高为
的等腰梯形,将它沿对称轴OO1折成直二面角,如图2.
(Ⅰ)证明:AC⊥BO1;
(Ⅱ)求二面角O-AC-O1的大小.
![]()
解法一(I)证明 由题设知OA⊥OO1,OB⊥OO1.
所以∠AOB是所折成的直二面角的平面角,
即OA⊥OB. 故可以O为原点,OA、OB、OO1
所在直线分别为
轴、y轴、z轴建立空间直角坐标系,
如图3,则相关各点的坐标是A(3,0,0),
B(0,3,0),C(0,1,
)
|
从而
-------3分
所以AC⊥BO1. ----------5分
(II)解:因为
所以BO1⊥OC,-----6分
由(I)AC⊥BO1,所以BO1⊥平面OAC,
是平面OAC的一个法向量.------8分
设
是0平面O1AC的一个法向量,
由
得
. -------10分
设二面角O—AC—O1的大小为
,由
、
的方向可知![]()
,
>,
所以cos![]()
,
>=![]()
即二面角O—AC—O1的大小是
------12分
解法二(I)证明 由题设知OA⊥OO1,OB⊥OO1,
所以∠AOB是所折成的直二面角的平面角, 即OA⊥OB. ------2分
从而AO⊥平面OBCO1,
OC是AC在面OBCO1内的射影.------3分
因为
,
所以∠OO1B=60°,∠O1OC=30°,从而OC⊥BO1
由三垂线定理得AC⊥BO1.------5分
(II)解 由(I)AC⊥BO1,OC⊥BO1,知BO1⊥平面AOC.--------6分
设OC∩O1B=E,过点E作EF⊥AC于F,连结O1F(如图4),则EF是O1F在平面AOC
内的射影,由三垂线定理得O1F⊥AC.
所以∠O1FE是二面角O—AC—O1的平面角. -------8分
由题设知OA=3,OO1=
,O1C=1,
所以
,
从而
, -------10分
又O1E=OO1·sin30°=
,所以
即二面角O—AC—O1的大小是
------12分
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com