精英家教网 > 高中数学 > 题目详情
已知幂函数y=x 
p
q
(|p|、|q|是互质的整数)的图象如图所示,则p、q的关系为(  )
A、pq>0,p、q均为奇数
B、pq<0,p、q均为奇数
C、pq<0,p为奇数,q为偶数
D、pq<0,p为偶数,q为奇数
考点:幂函数的概念、解析式、定义域、值域
专题:函数的性质及应用
分析:由已知条件推导出函数为偶函数,p为偶数,q为奇数.再利用导数的性质推导出pq<0.
解答: 解:如图,∵函数的图象关于y轴对称,
∴函数为偶函数,
p为偶数,
∵函数y=x 
p
q
在(0,+∞)上是减函数,
∴它的导函数y′=
p
q
x 
p-q
q
<0,
p
q
<0
.∴pq<0,
∵p、q互质,∴q为奇数.
故选:D.
点评:本题考查幂函函数的图象及性质的应用,是中档题,解题时要熟练掌握幂函数的概念.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,圆C1:x2+y2-4x-8y+19=0关于直线l:x+2y-5=0对称的圆C2的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题,其中真命题的个数是(  )
①存在x0∈R,使得sinx0+cosx0=2sin
24
成立;
②对于任意的三个平面向量
a
b
c
,总有(
a
b
)•
c
=
a
•(
b
c
)成立;
③相关系数r(|r|≤1),|r|值越大,变量之间的线性相关程度越高.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-y2=8的左右焦点分别是F1,F2,点Pn(xn,yn)(n=1,2,3…)在其右支上,且满足|Pn+1F2|=|PnF1|,P1F2⊥F1F2,则x2014的值是(  )
A、8056
2
B、8048
2
C、8056
D、8048

查看答案和解析>>

科目:高中数学 来源: 题型:

从某校高三数学学业水平测试卷中随机抽取部分试卷,对其成绩进行分析,因某特殊原因,所得的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,则频率分布直方图中,从左往右第四个矩形的面积为(  )
A、
6
25
B、
4
25
C、
6
23
D、
4
23

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
与抛物线y2=2px(p>0)的交点为:A、B,A、B连线经过抛物线的焦点F,且线段AB的长等于双曲线的虚轴长,则双曲线的离心率为(  )
A、
2
B、2
C、3
D、
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n为正偶数,用数学归纳法证明1-
1
2
+
1
3
-
1
4
+…+
1
n-1
-
1
n
=2(
1
n+2
+
1
n+4
+…+
1
2n
)
时,第一步应验证(  )
A、1=2×
1
2
B、1-
1
2
+
1
3
=2(
1
1+2
+
1
2+4
)
C、1-
1
2
+
1
3
-
1
4
=2(
1
4+2
+
1
4+4
)
D、1-
1
2
=2×
1
2+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式|x-3|+|x-4|≥m的解集为R,则实数m的取值范围(  )
A、m<1
B、m≤1
C、m≤
1
10
D、m<
1
10

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:对任意大于1的正整数n,有
1
2×3
+
1
3×4
+…+
1
n(n+1)
1
2

查看答案和解析>>

同步练习册答案