精英家教网 > 高中数学 > 题目详情
19.在等差数列{an}中,已知a1+a2+a3=9,a2a4=21,数列{bn}满足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}=1-\frac{1}{2^n}({n∈{N^*}}),{S_n}={b_1}+{b_2}+…+{b_n}$,若Sn>2,则n的最小值为(  )
A.5B.4C.3D.2

分析 设等差数列{an}的公差为d,由知a1+a2+a3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得an.由数列{bn}满足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}=1-\frac{1}{2^n}({n∈{N^*}}),{S_n}={b_1}+{b_2}+…+{b_n}$,利用递推关系可得$\frac{{b}_{n}}{{a}_{n}}=\frac{1}{{2}^{n}}$bn=$\frac{{a}_{n}}{{2}^{n}}$,利用错位相减法求出Sn,解不等式Sn>2即可.

解答 解:设等差数列{an}的公差为d,由知a1+a2+a3=9,a2a4=21,
可得3a1+d=9,(a1+d)(a1+3d)=21⇒a1=1,d=2.
∴an=1+2(n-1)=2n-1.
$\frac{{b}_{1}}{{a}_{1}}+\frac{{b}_{2}}{{a}_{2}}+…+\frac{{b}_{n}}{{a}_{n}}=1-\frac{1}{{2}^{n}}$,$\frac{{b}_{1}}{{a}_{1}}+\frac{{b}_{2}}{{a}_{2}}+…+\frac{{b}_{n-1}}{{a}_{n-1}}=1-\frac{1}{{2}^{n-1}}$⇒得$\frac{{b}_{n}}{{a}_{n}}=\frac{1}{{2}^{n}}$,bn=$\frac{{a}_{n}}{{2}^{n}}$=$\frac{2n-1}{{2}^{n}}$,
${s}_{n}=\frac{1}{{2}^{1}}+\frac{3}{{2}^{2}}+…+\frac{2n-1}{{2}^{n}}$,$\frac{1}{2}{s}_{n}=\frac{1}{{2}^{2}}+\frac{3}{{2}^{3}}+…+\frac{2n-3}{{2}^{n}}+\frac{2n-1}{{2}^{n+1}}$,⇒${s}_{n}=3-\frac{2n+3}{{2}^{n}}$.
∵S1=$\frac{1}{2}$,S2=$\frac{5}{4}$,S3=$\frac{15}{8}$,S4=$\frac{37}{16}$,所以满足Sn>2的n的最小值为4.
故选:B.

点评 本题考查了等差数列通项公式与错位相减求和、数列递推关系及其单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知直线l:y=$\sqrt{3}$+1,则直线的倾斜角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2x+3,-x)(x∈R),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为(  )
A.-2B.-2或0C.1或-3D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合M={x|x2-x-2<0},N={x|x≤k},若M?N,则k的取值范围是(  )
A.(-∞,2]B.[-1,+∞)C.(-1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合M={x|x2-x-2<0},N={x|x≤k},若M∩N=M,则k的取值范围是(  )
A.(-∞,2]B.[-1,+∞)C.(-1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:y1=3$\sqrt{2}$sin(100πt),y2=3sin(100πt-$\frac{π}{4}$),则这两个声波合成后(即y=y1+y2)的声波的振幅为(  )
A.6$\sqrt{2}$B.3+3$\sqrt{2}$C.3$\sqrt{2}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=cos$\frac{x}{2}$的最小正周期是(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等差数列{an}中,a3+a6=a4+5,且a2不大于1,则a8的取值范围是(  )
A.[9,+∞)B.(-∞,9]C.(9,+∞)D.(-∞,9)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.P是双曲线C:$\frac{x^2}{2}-{y^2}$=1右支上一点,直线l是双曲线C的一条渐近线,P在l上的射影为Q,F1是双曲线C的左焦点,则|PF1|+|PQ|的最小值为(  )
A.1B.$2+\frac{{\sqrt{15}}}{5}$C.$4+\frac{{\sqrt{15}}}{5}$D.$2\sqrt{2}+1$

查看答案和解析>>

同步练习册答案